高斯归一化:处理视觉数据中的突发性

Rémi Trichet, N. O’Connor
{"title":"高斯归一化:处理视觉数据中的突发性","authors":"Rémi Trichet, N. O’Connor","doi":"10.1109/AVSS.2019.8909857","DOIUrl":null,"url":null,"abstract":"This paper addresses histogram burstiness, defined as the tendency of histograms to feature peaks out of proportion with their general distribution. After highlighting the impact of this growing issue on computer vision problems and the need to preserve the distribution information, we introduce a new normalization based on a Gaussian fit with a pre-defined variance for each datum that suppresses burst without adversely affecting the distribution. Experimental results on four public datasets show that our normalization scheme provides a staggering performance boost compared to other normalizations, even allowing Gaussian-normalized Bag-of-Words to perform similarly to intra-normalized Fisher vectors.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian Normalization: Handling Burstiness in Visual Data\",\"authors\":\"Rémi Trichet, N. O’Connor\",\"doi\":\"10.1109/AVSS.2019.8909857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses histogram burstiness, defined as the tendency of histograms to feature peaks out of proportion with their general distribution. After highlighting the impact of this growing issue on computer vision problems and the need to preserve the distribution information, we introduce a new normalization based on a Gaussian fit with a pre-defined variance for each datum that suppresses burst without adversely affecting the distribution. Experimental results on four public datasets show that our normalization scheme provides a staggering performance boost compared to other normalizations, even allowing Gaussian-normalized Bag-of-Words to perform similarly to intra-normalized Fisher vectors.\",\"PeriodicalId\":243194,\"journal\":{\"name\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2019.8909857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论直方图突发性,定义为直方图特征峰与其总体分布不成比例的趋势。在强调了这一日益增长的问题对计算机视觉问题的影响以及保留分布信息的必要性之后,我们引入了一种新的归一化方法,该归一化基于高斯拟合,每个数据具有预定义的方差,可以抑制突发而不会对分布产生不利影响。在四个公共数据集上的实验结果表明,与其他归一化相比,我们的归一化方案提供了惊人的性能提升,甚至允许高斯归一化词袋的性能与归一化的Fisher向量相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Normalization: Handling Burstiness in Visual Data
This paper addresses histogram burstiness, defined as the tendency of histograms to feature peaks out of proportion with their general distribution. After highlighting the impact of this growing issue on computer vision problems and the need to preserve the distribution information, we introduce a new normalization based on a Gaussian fit with a pre-defined variance for each datum that suppresses burst without adversely affecting the distribution. Experimental results on four public datasets show that our normalization scheme provides a staggering performance boost compared to other normalizations, even allowing Gaussian-normalized Bag-of-Words to perform similarly to intra-normalized Fisher vectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信