应用小波变换对人体加速度信号进行精确分析,解决了训练中的问题

E. Martin
{"title":"应用小波变换对人体加速度信号进行精确分析,解决了训练中的问题","authors":"E. Martin","doi":"10.1109/BIBM.2010.5706604","DOIUrl":null,"url":null,"abstract":"Within the field of medical informatics, the analysis of human body acceleration signals to examine gait patterns can provide valuable information for multiple health-related applications. In this paper, we study the suitability of the wavelet transform for the analysis of body acceleration signals, and propose useful guidelines to solve existing issues in this field (such as the need for training), thus enabling a smooth application of this signal processing tool in medical environments. Making use of these guidelines, we have successfully tested our approach to analyze body acceleration signals, delivering a rich characterization of different gait patterns, without the need for training.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Solving training issues in the application of the wavelet transform to precisely analyze human body acceleration signals\",\"authors\":\"E. Martin\",\"doi\":\"10.1109/BIBM.2010.5706604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the field of medical informatics, the analysis of human body acceleration signals to examine gait patterns can provide valuable information for multiple health-related applications. In this paper, we study the suitability of the wavelet transform for the analysis of body acceleration signals, and propose useful guidelines to solve existing issues in this field (such as the need for training), thus enabling a smooth application of this signal processing tool in medical environments. Making use of these guidelines, we have successfully tested our approach to analyze body acceleration signals, delivering a rich characterization of different gait patterns, without the need for training.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在医学信息学领域,分析人体加速度信号以检查步态模式可以为多种健康相关应用提供有价值的信息。在本文中,我们研究了小波变换对人体加速度信号分析的适用性,并提出了有用的指导方针来解决该领域存在的问题(例如需要训练),从而使该信号处理工具在医疗环境中顺利应用。利用这些指导方针,我们已经成功地测试了我们的方法来分析身体加速度信号,在不需要训练的情况下提供不同步态模式的丰富特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving training issues in the application of the wavelet transform to precisely analyze human body acceleration signals
Within the field of medical informatics, the analysis of human body acceleration signals to examine gait patterns can provide valuable information for multiple health-related applications. In this paper, we study the suitability of the wavelet transform for the analysis of body acceleration signals, and propose useful guidelines to solve existing issues in this field (such as the need for training), thus enabling a smooth application of this signal processing tool in medical environments. Making use of these guidelines, we have successfully tested our approach to analyze body acceleration signals, delivering a rich characterization of different gait patterns, without the need for training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信