{"title":"q次方根计算的复合迭代算法与体系结构","authors":"Álvaro Vázquez, J. Bruguera","doi":"10.1109/ARITH.2011.16","DOIUrl":null,"url":null,"abstract":"An algorithm for the q-th root extraction, q being any integer, is presented in this paper. The algorithm is based on an optimized implementation of X^{1/q} by a sequence of parallel and/or overlapped operations: (1) reciprocal, (2) digit-recurrence logarithm, (3) left-to-right carry-free multiplication and (4) on-line exponential. A detailed error analysis and two architectures are proposed, for low precision q and for higher precision q. The execution time and hardware requirements are estimated for single precision floating-point computations for several radices, this helps to determine which radices result in the most efficient implementations. The architectures proposed improve the features of other architectures for q-th root extraction.","PeriodicalId":272151,"journal":{"name":"2011 IEEE 20th Symposium on Computer Arithmetic","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Composite Iterative Algorithm and Architecture for q-th Root Calculation\",\"authors\":\"Álvaro Vázquez, J. Bruguera\",\"doi\":\"10.1109/ARITH.2011.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for the q-th root extraction, q being any integer, is presented in this paper. The algorithm is based on an optimized implementation of X^{1/q} by a sequence of parallel and/or overlapped operations: (1) reciprocal, (2) digit-recurrence logarithm, (3) left-to-right carry-free multiplication and (4) on-line exponential. A detailed error analysis and two architectures are proposed, for low precision q and for higher precision q. The execution time and hardware requirements are estimated for single precision floating-point computations for several radices, this helps to determine which radices result in the most efficient implementations. The architectures proposed improve the features of other architectures for q-th root extraction.\",\"PeriodicalId\":272151,\"journal\":{\"name\":\"2011 IEEE 20th Symposium on Computer Arithmetic\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 20th Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2011.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 20th Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2011.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Composite Iterative Algorithm and Architecture for q-th Root Calculation
An algorithm for the q-th root extraction, q being any integer, is presented in this paper. The algorithm is based on an optimized implementation of X^{1/q} by a sequence of parallel and/or overlapped operations: (1) reciprocal, (2) digit-recurrence logarithm, (3) left-to-right carry-free multiplication and (4) on-line exponential. A detailed error analysis and two architectures are proposed, for low precision q and for higher precision q. The execution time and hardware requirements are estimated for single precision floating-point computations for several radices, this helps to determine which radices result in the most efficient implementations. The architectures proposed improve the features of other architectures for q-th root extraction.