利用总最小二乘法克服TDoA定位估计中的奇异性

M. Laaraiedh, S. Avrillon, B. Uguen
{"title":"利用总最小二乘法克服TDoA定位估计中的奇异性","authors":"M. Laaraiedh, S. Avrillon, B. Uguen","doi":"10.1109/ICSCS.2009.5412603","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an estimation scheme to overcome singularities which may deteriorate Time Difference of Arrival (TDoA) based localization accuracy when using Least Square (LS) estimator. The solution is based on Total Least Square (TLS) estimator. We provide an algorithm of localization which exploits the rank and the condition number of matrices in order to enhance accuracy. The Monte Carlo simulations show that the proposed algorithm outperforms the typical LS algorithm. It is also more robust to the erroneous TDoAs.","PeriodicalId":126072,"journal":{"name":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Overcoming singularities in TDoA Based location estimation using Total Least Square\",\"authors\":\"M. Laaraiedh, S. Avrillon, B. Uguen\",\"doi\":\"10.1109/ICSCS.2009.5412603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an estimation scheme to overcome singularities which may deteriorate Time Difference of Arrival (TDoA) based localization accuracy when using Least Square (LS) estimator. The solution is based on Total Least Square (TLS) estimator. We provide an algorithm of localization which exploits the rank and the condition number of matrices in order to enhance accuracy. The Monte Carlo simulations show that the proposed algorithm outperforms the typical LS algorithm. It is also more robust to the erroneous TDoAs.\",\"PeriodicalId\":126072,\"journal\":{\"name\":\"2009 3rd International Conference on Signals, Circuits and Systems (SCS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 3rd International Conference on Signals, Circuits and Systems (SCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCS.2009.5412603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCS.2009.5412603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种克服奇异性的估计方案,该方案在使用最小二乘估计器时可能会降低基于到达时间差(TDoA)的定位精度。该解决方案基于总最小二乘(TLS)估计。为了提高定位精度,我们提出了一种利用矩阵的秩和条件数进行定位的算法。蒙特卡罗仿真表明,该算法优于典型的LS算法。它对错误的tdoa也更健壮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overcoming singularities in TDoA Based location estimation using Total Least Square
In this paper, we propose an estimation scheme to overcome singularities which may deteriorate Time Difference of Arrival (TDoA) based localization accuracy when using Least Square (LS) estimator. The solution is based on Total Least Square (TLS) estimator. We provide an algorithm of localization which exploits the rank and the condition number of matrices in order to enhance accuracy. The Monte Carlo simulations show that the proposed algorithm outperforms the typical LS algorithm. It is also more robust to the erroneous TDoAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信