{"title":"金属蛋白四组不同预测特征的分析","authors":"H. Seker, P. Haris","doi":"10.1109/CSBW.2005.23","DOIUrl":null,"url":null,"abstract":"Metals bound to the protein are important for functional or structural roles. Despite their importance there is a distinct lack of research for identification of metalloproteins from sequence data and their predictive features that help distinguish them from non-metal binding proteins. In this study, four sets of features were analysed in order to see their ability to distinguish between metal and non-metal binding proteins. The analysis was carried out using a novel fuzzy logic method. The results show that the amino acid composition is more capable of distinguishing metal from non-metal binding proteins, than any of the other three features, yielding a predictive accuracy of 69.4%. Cofactors were the least useful feature for distinguishing metalloproteins. However, better results were obtained when physico-chemical and secondary structure features are used, yielding accuracies of 67.8% and 67.1%, respectively. Although the amino acid composition yields the highest predictive accuracy, considering the number of features, the latter two sets of features may be more appropriate for such analysis.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of four different sets of predictive features for metalloproteins\",\"authors\":\"H. Seker, P. Haris\",\"doi\":\"10.1109/CSBW.2005.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metals bound to the protein are important for functional or structural roles. Despite their importance there is a distinct lack of research for identification of metalloproteins from sequence data and their predictive features that help distinguish them from non-metal binding proteins. In this study, four sets of features were analysed in order to see their ability to distinguish between metal and non-metal binding proteins. The analysis was carried out using a novel fuzzy logic method. The results show that the amino acid composition is more capable of distinguishing metal from non-metal binding proteins, than any of the other three features, yielding a predictive accuracy of 69.4%. Cofactors were the least useful feature for distinguishing metalloproteins. However, better results were obtained when physico-chemical and secondary structure features are used, yielding accuracies of 67.8% and 67.1%, respectively. Although the amino acid composition yields the highest predictive accuracy, considering the number of features, the latter two sets of features may be more appropriate for such analysis.\",\"PeriodicalId\":123531,\"journal\":{\"name\":\"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSBW.2005.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of four different sets of predictive features for metalloproteins
Metals bound to the protein are important for functional or structural roles. Despite their importance there is a distinct lack of research for identification of metalloproteins from sequence data and their predictive features that help distinguish them from non-metal binding proteins. In this study, four sets of features were analysed in order to see their ability to distinguish between metal and non-metal binding proteins. The analysis was carried out using a novel fuzzy logic method. The results show that the amino acid composition is more capable of distinguishing metal from non-metal binding proteins, than any of the other three features, yielding a predictive accuracy of 69.4%. Cofactors were the least useful feature for distinguishing metalloproteins. However, better results were obtained when physico-chemical and secondary structure features are used, yielding accuracies of 67.8% and 67.1%, respectively. Although the amino acid composition yields the highest predictive accuracy, considering the number of features, the latter two sets of features may be more appropriate for such analysis.