B. Nuernberger, Kuo-Chin Lien, Lennon Grinta, Chris Sweeney, M. Turk, Tobias Höllerer
{"title":"基于图像的三维重构场景中的多视图手势标注","authors":"B. Nuernberger, Kuo-Chin Lien, Lennon Grinta, Chris Sweeney, M. Turk, Tobias Höllerer","doi":"10.1145/2993369.2993371","DOIUrl":null,"url":null,"abstract":"We present a novel 2D gesture annotation method for use in image-based 3D reconstructed scenes with applications in collaborative virtual and augmented reality. Image-based reconstructions allow users to virtually explore a remote environment using image-based rendering techniques. To collaborate with other users, either synchronously or asynchronously, simple 2D gesture annotations can be used to convey spatial information to another user. Unfortunately, prior methods are either unable to disambiguate such 2D annotations in 3D from novel viewpoints or require relatively dense reconstructions of the environment. In this paper, we propose a simple multi-view annotation method that is useful in a variety of scenarios and applicable to both very sparse and dense 3D reconstructions. Specifically, we employ interactive disambiguation of the 2D gestures via a second annotation drawn from another viewpoint, triangulating two drawings to achieve a 3D result. Our method automatically chooses an appropriate second viewpoint and uses image-based rendering transitions to keep the user oriented while moving to the second viewpoint. User experiments in an asynchronous collaboration scenario demonstrate the usability of the method and its superiority over a baseline method. In addition, we showcase our method running on a variety of image-based reconstruction datasets and highlight its use in a synchronous local-remote user collaboration system.","PeriodicalId":396801,"journal":{"name":"Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Multi-view gesture annotations in image-based 3D reconstructed scenes\",\"authors\":\"B. Nuernberger, Kuo-Chin Lien, Lennon Grinta, Chris Sweeney, M. Turk, Tobias Höllerer\",\"doi\":\"10.1145/2993369.2993371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel 2D gesture annotation method for use in image-based 3D reconstructed scenes with applications in collaborative virtual and augmented reality. Image-based reconstructions allow users to virtually explore a remote environment using image-based rendering techniques. To collaborate with other users, either synchronously or asynchronously, simple 2D gesture annotations can be used to convey spatial information to another user. Unfortunately, prior methods are either unable to disambiguate such 2D annotations in 3D from novel viewpoints or require relatively dense reconstructions of the environment. In this paper, we propose a simple multi-view annotation method that is useful in a variety of scenarios and applicable to both very sparse and dense 3D reconstructions. Specifically, we employ interactive disambiguation of the 2D gestures via a second annotation drawn from another viewpoint, triangulating two drawings to achieve a 3D result. Our method automatically chooses an appropriate second viewpoint and uses image-based rendering transitions to keep the user oriented while moving to the second viewpoint. User experiments in an asynchronous collaboration scenario demonstrate the usability of the method and its superiority over a baseline method. In addition, we showcase our method running on a variety of image-based reconstruction datasets and highlight its use in a synchronous local-remote user collaboration system.\",\"PeriodicalId\":396801,\"journal\":{\"name\":\"Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2993369.2993371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993369.2993371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-view gesture annotations in image-based 3D reconstructed scenes
We present a novel 2D gesture annotation method for use in image-based 3D reconstructed scenes with applications in collaborative virtual and augmented reality. Image-based reconstructions allow users to virtually explore a remote environment using image-based rendering techniques. To collaborate with other users, either synchronously or asynchronously, simple 2D gesture annotations can be used to convey spatial information to another user. Unfortunately, prior methods are either unable to disambiguate such 2D annotations in 3D from novel viewpoints or require relatively dense reconstructions of the environment. In this paper, we propose a simple multi-view annotation method that is useful in a variety of scenarios and applicable to both very sparse and dense 3D reconstructions. Specifically, we employ interactive disambiguation of the 2D gestures via a second annotation drawn from another viewpoint, triangulating two drawings to achieve a 3D result. Our method automatically chooses an appropriate second viewpoint and uses image-based rendering transitions to keep the user oriented while moving to the second viewpoint. User experiments in an asynchronous collaboration scenario demonstrate the usability of the method and its superiority over a baseline method. In addition, we showcase our method running on a variety of image-based reconstruction datasets and highlight its use in a synchronous local-remote user collaboration system.