生成多次出现均匀随机序列的加性同余方法

D. M. Ionescu, M. Wickert
{"title":"生成多次出现均匀随机序列的加性同余方法","authors":"D. M. Ionescu, M. Wickert","doi":"10.1109/WITS.1994.513929","DOIUrl":null,"url":null,"abstract":"The formalism behind a novel additive congruential method (ACM) is described. This method yields uniform random sequences whose outcomes occur more than once throughout the sequence. The approach to generating a uniformly distributed pseudorandom sequence (PS) is presented. For a selected prime, p, the PS is a sequence of random variables (RV) over the Galois field GF(p). The ACM yields a Markov PS, where each valid outcome appears more than once within the main period, and still obeys a uniform distribution.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An additive congruential method for generating a multiple occurrence uniform random sequence\",\"authors\":\"D. M. Ionescu, M. Wickert\",\"doi\":\"10.1109/WITS.1994.513929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formalism behind a novel additive congruential method (ACM) is described. This method yields uniform random sequences whose outcomes occur more than once throughout the sequence. The approach to generating a uniformly distributed pseudorandom sequence (PS) is presented. For a selected prime, p, the PS is a sequence of random variables (RV) over the Galois field GF(p). The ACM yields a Markov PS, where each valid outcome appears more than once within the main period, and still obeys a uniform distribution.\",\"PeriodicalId\":423518,\"journal\":{\"name\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.1994.513929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

描述了一种新的加性同余方法(ACM)背后的形式主义。此方法产生均匀随机序列,其结果在整个序列中出现不止一次。提出了一种均匀分布伪随机序列的生成方法。对于选定的素数p, PS是伽罗瓦域GF(p)上的随机变量序列(RV)。ACM产生一个马尔可夫PS,其中每个有效结果在主周期内出现多次,并且仍然服从均匀分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An additive congruential method for generating a multiple occurrence uniform random sequence
The formalism behind a novel additive congruential method (ACM) is described. This method yields uniform random sequences whose outcomes occur more than once throughout the sequence. The approach to generating a uniformly distributed pseudorandom sequence (PS) is presented. For a selected prime, p, the PS is a sequence of random variables (RV) over the Galois field GF(p). The ACM yields a Markov PS, where each valid outcome appears more than once within the main period, and still obeys a uniform distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信