基于HMM的体育视频事件识别与分类

V. Ellappan, R. Rajkumar
{"title":"基于HMM的体育视频事件识别与分类","authors":"V. Ellappan, R. Rajkumar","doi":"10.1504/ijcaet.2020.10027368","DOIUrl":null,"url":null,"abstract":"Sports event recognition and classification is a challenging task due to the number of possible categories. On one hand, how to characterise legitimate occasion classification names and how to acquire preparing tests for these classes should be investigated; then again, it is non-inconsequential to accomplish acceptable order execution. To address these issues, we propose the use of the spatio-temporal behaviour of an object in the footage as an embodiment of a semantic event. This is accomplished by modelling the evaluation of the position of the object with a hidden Markov model (HMM). Snooker is used as an example for this purpose of research. The system firstly parses the video sequence based on the geometry of the content in the camera view and classifies the footage as a particular view type. Secondly, we consider the relative position of the white ball on the snooker table over the duration of a clip to embody semantic events. The temporal behaviour of the white ball is modelled using a HMM where each model is representative of a particular semantic event.","PeriodicalId":346646,"journal":{"name":"Int. J. Comput. Aided Eng. Technol.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Event recognition and classification in sports video using HMM\",\"authors\":\"V. Ellappan, R. Rajkumar\",\"doi\":\"10.1504/ijcaet.2020.10027368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sports event recognition and classification is a challenging task due to the number of possible categories. On one hand, how to characterise legitimate occasion classification names and how to acquire preparing tests for these classes should be investigated; then again, it is non-inconsequential to accomplish acceptable order execution. To address these issues, we propose the use of the spatio-temporal behaviour of an object in the footage as an embodiment of a semantic event. This is accomplished by modelling the evaluation of the position of the object with a hidden Markov model (HMM). Snooker is used as an example for this purpose of research. The system firstly parses the video sequence based on the geometry of the content in the camera view and classifies the footage as a particular view type. Secondly, we consider the relative position of the white ball on the snooker table over the duration of a clip to embody semantic events. The temporal behaviour of the white ball is modelled using a HMM where each model is representative of a particular semantic event.\",\"PeriodicalId\":346646,\"journal\":{\"name\":\"Int. J. Comput. Aided Eng. Technol.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Aided Eng. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcaet.2020.10027368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Aided Eng. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcaet.2020.10027368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于可能的类别数量众多,体育项目的识别和分类是一项具有挑战性的任务。一方面,应该研究如何确定合法场合分类名称的特征,以及如何获得这些类别的准备测试;然后,完成可接受的订单执行并不是无关紧要的。为了解决这些问题,我们建议使用镜头中对象的时空行为作为语义事件的体现。这是通过使用隐马尔可夫模型(HMM)对目标位置的评估建模来实现的。为了研究这个目的,我们以斯诺克为例。该系统首先根据摄像机视图中内容的几何形状对视频序列进行解析,并将镜头分类为特定的视图类型。其次,我们考虑在一个片段的持续时间内,白球在斯诺克桌上的相对位置来体现语义事件。白球的时间行为使用HMM建模,其中每个模型代表一个特定的语义事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event recognition and classification in sports video using HMM
Sports event recognition and classification is a challenging task due to the number of possible categories. On one hand, how to characterise legitimate occasion classification names and how to acquire preparing tests for these classes should be investigated; then again, it is non-inconsequential to accomplish acceptable order execution. To address these issues, we propose the use of the spatio-temporal behaviour of an object in the footage as an embodiment of a semantic event. This is accomplished by modelling the evaluation of the position of the object with a hidden Markov model (HMM). Snooker is used as an example for this purpose of research. The system firstly parses the video sequence based on the geometry of the content in the camera view and classifies the footage as a particular view type. Secondly, we consider the relative position of the white ball on the snooker table over the duration of a clip to embody semantic events. The temporal behaviour of the white ball is modelled using a HMM where each model is representative of a particular semantic event.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信