在不变量约束下用动态模态分解辨识非线性动力系统方程

IF 1 4区 工程技术 Q4 MECHANICS
Florian De Vuyst , Pierre Villon
{"title":"在不变量约束下用动态模态分解辨识非线性动力系统方程","authors":"Florian De Vuyst ,&nbsp;Pierre Villon","doi":"10.1016/j.crme.2019.11.013","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, an algorithm for identifying equations representing a continuous nonlinear dynamical system from a noise-free state and time-derivative state measurements is proposed. It is based on a variant of the extended dynamic mode decomposition. A particular attention is paid to guarantee that the physical invariant quantities stay constant along the integral curves. The numerical methodology is validated on a two-dimensional Lotka–Volterra system. For this case, the differential equations are perfectly retrieved from data measurements. Perspectives of extension to more complex systems are discussed.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 11","pages":"Pages 882-890"},"PeriodicalIF":1.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.013","citationCount":"1","resultStr":"{\"title\":\"Identification of nonlinear dynamical system equations using dynamic mode decomposition under invariant quantity constraints\",\"authors\":\"Florian De Vuyst ,&nbsp;Pierre Villon\",\"doi\":\"10.1016/j.crme.2019.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, an algorithm for identifying equations representing a continuous nonlinear dynamical system from a noise-free state and time-derivative state measurements is proposed. It is based on a variant of the extended dynamic mode decomposition. A particular attention is paid to guarantee that the physical invariant quantities stay constant along the integral curves. The numerical methodology is validated on a two-dimensional Lotka–Volterra system. For this case, the differential equations are perfectly retrieved from data measurements. Perspectives of extension to more complex systems are discussed.</p></div>\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":\"347 11\",\"pages\":\"Pages 882-890\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.013\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631072119301846\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301846","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种从无噪声状态和时间导数状态测量中识别连续非线性动力系统方程的算法。它是基于扩展动态模态分解的一种变体。特别注意保证物理不变量沿积分曲线保持恒定。在二维Lotka-Volterra系统上对数值方法进行了验证。在这种情况下,微分方程完全可以从数据测量中检索到。讨论了扩展到更复杂系统的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of nonlinear dynamical system equations using dynamic mode decomposition under invariant quantity constraints

In this paper, an algorithm for identifying equations representing a continuous nonlinear dynamical system from a noise-free state and time-derivative state measurements is proposed. It is based on a variant of the extended dynamic mode decomposition. A particular attention is paid to guarantee that the physical invariant quantities stay constant along the integral curves. The numerical methodology is validated on a two-dimensional Lotka–Volterra system. For this case, the differential equations are perfectly retrieved from data measurements. Perspectives of extension to more complex systems are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信