{"title":"量化等式约束","authors":"M. Bodirsky, Hubie Chen","doi":"10.1137/080725209","DOIUrl":null,"url":null,"abstract":"An equality template (also equality constraint language) is a relational structure with infinite universe whose relations can be defined by boolean combinations of equalities. We prove a complete complexity classification for quantified constraint satisfaction problems (QCSPs) over equality templates: these problems are in L (decidable in logarithmic space), NP-complete, or PSPACE-complete. To establish our classification theorem we combine methods from universal algebra with concepts from model theory.","PeriodicalId":137827,"journal":{"name":"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Quantified Equality Constraints\",\"authors\":\"M. Bodirsky, Hubie Chen\",\"doi\":\"10.1137/080725209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An equality template (also equality constraint language) is a relational structure with infinite universe whose relations can be defined by boolean combinations of equalities. We prove a complete complexity classification for quantified constraint satisfaction problems (QCSPs) over equality templates: these problems are in L (decidable in logarithmic space), NP-complete, or PSPACE-complete. To establish our classification theorem we combine methods from universal algebra with concepts from model theory.\",\"PeriodicalId\":137827,\"journal\":{\"name\":\"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/080725209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/080725209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An equality template (also equality constraint language) is a relational structure with infinite universe whose relations can be defined by boolean combinations of equalities. We prove a complete complexity classification for quantified constraint satisfaction problems (QCSPs) over equality templates: these problems are in L (decidable in logarithmic space), NP-complete, or PSPACE-complete. To establish our classification theorem we combine methods from universal algebra with concepts from model theory.