用于实时生物传感的膜上微谐振器

M. Mahdavi, Honglei Wang, Amin Abbasalipour, Walter Hu, S. Pourkamali
{"title":"用于实时生物传感的膜上微谐振器","authors":"M. Mahdavi, Honglei Wang, Amin Abbasalipour, Walter Hu, S. Pourkamali","doi":"10.1109/FCS.2018.8597584","DOIUrl":null,"url":null,"abstract":"This work presents Micro-Resonator-on-Membrane (MRoM) as an effective approach to harness high mass sensitivity of MEMS resonators for real-time label-free biosensing. MRoMs are formed on SOI substrates and are comprised of a Thin-film Piezoelectric-on-Si (TPoS) micro-resonator separated by a thin oxide membrane from the backside cavity in which biological solutions are hosted. The isolating membrane reduces the liquid-resonator interaction and minimizes viscous losses to maintain relatively high resonator quality factor $(Q)$ in contact with liquid. The membrane also insulates the resonator electrical connections from the conductive biological solution eliminating undesirable interferences. In order to minimize the added anchor loss from the membrane connecting the resonator to the substrate, in-plane acoustic reflectors are carved into the device layer around the resonator. Membrane surface modification with antibody and detection of target analyte has been successfully demonstrated for MRoMs. Frequency shift of 90 kHz (805 ppm) has been measured for a 111 MHz 3rd length extensional (LE) mode of an MRoM due to adsorption of anti-mouse-IgG molecules tagged with 10 nm diameter gold nanoparticles with surface density of 1011/cm2. This translates to measured mass sensitivity of −88.9 Hz.cm2/ng","PeriodicalId":180164,"journal":{"name":"2018 IEEE International Frequency Control Symposium (IFCS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-Resonator-on-Membrane for Real-Time Biosensing\",\"authors\":\"M. Mahdavi, Honglei Wang, Amin Abbasalipour, Walter Hu, S. Pourkamali\",\"doi\":\"10.1109/FCS.2018.8597584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents Micro-Resonator-on-Membrane (MRoM) as an effective approach to harness high mass sensitivity of MEMS resonators for real-time label-free biosensing. MRoMs are formed on SOI substrates and are comprised of a Thin-film Piezoelectric-on-Si (TPoS) micro-resonator separated by a thin oxide membrane from the backside cavity in which biological solutions are hosted. The isolating membrane reduces the liquid-resonator interaction and minimizes viscous losses to maintain relatively high resonator quality factor $(Q)$ in contact with liquid. The membrane also insulates the resonator electrical connections from the conductive biological solution eliminating undesirable interferences. In order to minimize the added anchor loss from the membrane connecting the resonator to the substrate, in-plane acoustic reflectors are carved into the device layer around the resonator. Membrane surface modification with antibody and detection of target analyte has been successfully demonstrated for MRoMs. Frequency shift of 90 kHz (805 ppm) has been measured for a 111 MHz 3rd length extensional (LE) mode of an MRoM due to adsorption of anti-mouse-IgG molecules tagged with 10 nm diameter gold nanoparticles with surface density of 1011/cm2. This translates to measured mass sensitivity of −88.9 Hz.cm2/ng\",\"PeriodicalId\":180164,\"journal\":{\"name\":\"2018 IEEE International Frequency Control Symposium (IFCS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Frequency Control Symposium (IFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2018.8597584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Frequency Control Symposium (IFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2018.8597584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了膜上微谐振器(mrm)作为利用MEMS谐振器的高质量灵敏度进行实时无标签生物传感的有效方法。mrom在SOI衬底上形成,由薄膜压电硅(TPoS)微谐振器组成,该微谐振器由一层薄薄的氧化膜与承载生物溶液的后腔隔开。隔离膜减少了液体-谐振器的相互作用,最大限度地减少了粘性损失,从而在与液体接触时保持相对较高的谐振器质量因子$(Q)$。该膜还将谐振器电气连接与导电生物溶液隔离,消除了不希望的干扰。为了最大限度地减少连接谐振器和基板的膜所增加的锚损失,在谐振器周围的器件层中雕刻了平面内声反射器。用抗体修饰膜表面和检测目标分析物已经成功地证明了mrms。由于表面密度为1011/cm2的10 nm直径的金纳米粒子标记的抗小鼠igg分子吸附,在111 MHz的3长度扩展(LE)模式下,测量了90 kHz (805 ppm)的频移。这转化为测量的质量灵敏度为- 88.9赫兹。cm2/ng
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micro-Resonator-on-Membrane for Real-Time Biosensing
This work presents Micro-Resonator-on-Membrane (MRoM) as an effective approach to harness high mass sensitivity of MEMS resonators for real-time label-free biosensing. MRoMs are formed on SOI substrates and are comprised of a Thin-film Piezoelectric-on-Si (TPoS) micro-resonator separated by a thin oxide membrane from the backside cavity in which biological solutions are hosted. The isolating membrane reduces the liquid-resonator interaction and minimizes viscous losses to maintain relatively high resonator quality factor $(Q)$ in contact with liquid. The membrane also insulates the resonator electrical connections from the conductive biological solution eliminating undesirable interferences. In order to minimize the added anchor loss from the membrane connecting the resonator to the substrate, in-plane acoustic reflectors are carved into the device layer around the resonator. Membrane surface modification with antibody and detection of target analyte has been successfully demonstrated for MRoMs. Frequency shift of 90 kHz (805 ppm) has been measured for a 111 MHz 3rd length extensional (LE) mode of an MRoM due to adsorption of anti-mouse-IgG molecules tagged with 10 nm diameter gold nanoparticles with surface density of 1011/cm2. This translates to measured mass sensitivity of −88.9 Hz.cm2/ng
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信