{"title":"多项式的素数和素值","authors":"Arnaud Bodin, P. Dèbes, S. Najib","doi":"10.4171/lem/66-1/2-9","DOIUrl":null,"url":null,"abstract":"The Schinzel Hypothesis is a celebrated conjecture in number theory linking polynomial values and prime numbers. In the same vein we investigate the common divisors of values $P_1(n),\\ldots, P_s(n)$ of several polynomials. We deduce this coprime version of the Schinzel Hypothesis: under some natural assumption, coprime polynomials assume coprime values at infinitely many integers. Consequences include a version \"modulo an integer\" of the original Schinzel Hypothesis, with the Goldbach conjecture, again modulo an integer, as a special case.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Prime and coprime values of polynomials\",\"authors\":\"Arnaud Bodin, P. Dèbes, S. Najib\",\"doi\":\"10.4171/lem/66-1/2-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Schinzel Hypothesis is a celebrated conjecture in number theory linking polynomial values and prime numbers. In the same vein we investigate the common divisors of values $P_1(n),\\\\ldots, P_s(n)$ of several polynomials. We deduce this coprime version of the Schinzel Hypothesis: under some natural assumption, coprime polynomials assume coprime values at infinitely many integers. Consequences include a version \\\"modulo an integer\\\" of the original Schinzel Hypothesis, with the Goldbach conjecture, again modulo an integer, as a special case.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/66-1/2-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/66-1/2-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Schinzel Hypothesis is a celebrated conjecture in number theory linking polynomial values and prime numbers. In the same vein we investigate the common divisors of values $P_1(n),\ldots, P_s(n)$ of several polynomials. We deduce this coprime version of the Schinzel Hypothesis: under some natural assumption, coprime polynomials assume coprime values at infinitely many integers. Consequences include a version "modulo an integer" of the original Schinzel Hypothesis, with the Goldbach conjecture, again modulo an integer, as a special case.