Cesar Humberto Ortiz Huaman, Nilcer Fernandez Fuster, Ademir Cuadros Luyo, Jimmy Armas-Aguirre
{"title":"关键数据安全模型:金融部门缺口安全识别与风险分析","authors":"Cesar Humberto Ortiz Huaman, Nilcer Fernandez Fuster, Ademir Cuadros Luyo, Jimmy Armas-Aguirre","doi":"10.23919/cisti54924.2022.9820547","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a data security model of a big data analytical environment in the financial sector. Big Data can be seen as a trend in the advancement of technology that has opened the door to a new approach to understanding and decision making that is used to describe the vast amount of data (structured, unstructured and semi-structured) that is too time consuming and costly to load a relational database for analysis. The increase in cybercriminal attacks on an organization’s assets results in organizations beginning to invest in and care more about their cybersecurity points and controls. The management of business-critical data is an important point for which robust cybersecurity controls should be considered. The proposed model is applied in a datalake and allows the identification of security gaps on an analytical repository, a cybersecurity risk analysis, design of security components and an assessment of inherent risks on high criticality data in a repository of a regulated financial institution. The proposal was validated in financial entities in Lima, Peru. Proofs of concept of the model were carried out to measure the level of maturity focused on: leadership and commitment, risk management, protection control, event detection and risk management. Preliminary results allowed placing the entities in level 3 of the model, knowing their greatest weaknesses, strengths and how these can affect the fulfillment of business objectives.","PeriodicalId":187896,"journal":{"name":"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Critical Data Security Model: Gap Security Identification and Risk Analysis In Financial Sector\",\"authors\":\"Cesar Humberto Ortiz Huaman, Nilcer Fernandez Fuster, Ademir Cuadros Luyo, Jimmy Armas-Aguirre\",\"doi\":\"10.23919/cisti54924.2022.9820547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed a data security model of a big data analytical environment in the financial sector. Big Data can be seen as a trend in the advancement of technology that has opened the door to a new approach to understanding and decision making that is used to describe the vast amount of data (structured, unstructured and semi-structured) that is too time consuming and costly to load a relational database for analysis. The increase in cybercriminal attacks on an organization’s assets results in organizations beginning to invest in and care more about their cybersecurity points and controls. The management of business-critical data is an important point for which robust cybersecurity controls should be considered. The proposed model is applied in a datalake and allows the identification of security gaps on an analytical repository, a cybersecurity risk analysis, design of security components and an assessment of inherent risks on high criticality data in a repository of a regulated financial institution. The proposal was validated in financial entities in Lima, Peru. Proofs of concept of the model were carried out to measure the level of maturity focused on: leadership and commitment, risk management, protection control, event detection and risk management. Preliminary results allowed placing the entities in level 3 of the model, knowing their greatest weaknesses, strengths and how these can affect the fulfillment of business objectives.\",\"PeriodicalId\":187896,\"journal\":{\"name\":\"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cisti54924.2022.9820547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cisti54924.2022.9820547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Critical Data Security Model: Gap Security Identification and Risk Analysis In Financial Sector
In this paper, we proposed a data security model of a big data analytical environment in the financial sector. Big Data can be seen as a trend in the advancement of technology that has opened the door to a new approach to understanding and decision making that is used to describe the vast amount of data (structured, unstructured and semi-structured) that is too time consuming and costly to load a relational database for analysis. The increase in cybercriminal attacks on an organization’s assets results in organizations beginning to invest in and care more about their cybersecurity points and controls. The management of business-critical data is an important point for which robust cybersecurity controls should be considered. The proposed model is applied in a datalake and allows the identification of security gaps on an analytical repository, a cybersecurity risk analysis, design of security components and an assessment of inherent risks on high criticality data in a repository of a regulated financial institution. The proposal was validated in financial entities in Lima, Peru. Proofs of concept of the model were carried out to measure the level of maturity focused on: leadership and commitment, risk management, protection control, event detection and risk management. Preliminary results allowed placing the entities in level 3 of the model, knowing their greatest weaknesses, strengths and how these can affect the fulfillment of business objectives.