增强前馈神经网络内部表示的规则提取方法

V. Srivastava, Chitra Dhavale, S. Misra
{"title":"增强前馈神经网络内部表示的规则提取方法","authors":"V. Srivastava, Chitra Dhavale, S. Misra","doi":"10.1109/CCCS.2015.7374207","DOIUrl":null,"url":null,"abstract":"Human readable symbols are extracted from a trained neural network using Rule Extraction Techniques. In this paper internal representation of feed forward neural network is augmented by a distance term to produce fewer rules. This paper presents an efficient method to extract fewer rules from multilayer feed forward neural network. The proposed method calculates distance between activation values of hidden units for a given input values and moves them depending on the calculated distance value. The method shows fewer rules on three publicly available data sets without compromising classification accuracy.","PeriodicalId":300052,"journal":{"name":"2015 International Conference on Computing, Communication and Security (ICCCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Rule Extraction by augmenting internal representation of feed forward neural network\",\"authors\":\"V. Srivastava, Chitra Dhavale, S. Misra\",\"doi\":\"10.1109/CCCS.2015.7374207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human readable symbols are extracted from a trained neural network using Rule Extraction Techniques. In this paper internal representation of feed forward neural network is augmented by a distance term to produce fewer rules. This paper presents an efficient method to extract fewer rules from multilayer feed forward neural network. The proposed method calculates distance between activation values of hidden units for a given input values and moves them depending on the calculated distance value. The method shows fewer rules on three publicly available data sets without compromising classification accuracy.\",\"PeriodicalId\":300052,\"journal\":{\"name\":\"2015 International Conference on Computing, Communication and Security (ICCCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Computing, Communication and Security (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCCS.2015.7374207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Computing, Communication and Security (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCS.2015.7374207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用规则提取技术从训练好的神经网络中提取人类可读的符号。本文在前馈神经网络的内部表示中加入距离项,以产生更少的规则。提出了一种从多层前馈神经网络中提取较少规则的有效方法。该方法计算给定输入值的隐藏单元激活值之间的距离,并根据计算的距离值移动隐藏单元。该方法在不影响分类精度的情况下,对三个公开可用的数据集显示更少的规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Rule Extraction by augmenting internal representation of feed forward neural network
Human readable symbols are extracted from a trained neural network using Rule Extraction Techniques. In this paper internal representation of feed forward neural network is augmented by a distance term to produce fewer rules. This paper presents an efficient method to extract fewer rules from multilayer feed forward neural network. The proposed method calculates distance between activation values of hidden units for a given input values and moves them depending on the calculated distance value. The method shows fewer rules on three publicly available data sets without compromising classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信