{"title":"磁偶极子作用下粉煤灰与顺磁性纳米颗粒混合基底流体在动量滑移条件下拉伸片中的分析:FEM方法","authors":"Y. Nie","doi":"10.33552/MCMS.2020.03.000554","DOIUrl":null,"url":null,"abstract":"In this article, a comprehensive analysis is performed for fly ash and paramagnetic ( ) a T nanoparticles with a hybrid base and micro polar fluid with momentum slip conditions over a stretching sheet. With the aid of the similarity transformation, the PDEs obtained are transmuted in the nonlinear ODE system, after which the numerical simulation is performed with the finite element method. The effect of physical parameters on velocity, micro rotation, and temperature are analyzed graphically. Results reveal that the velocity boundary layer thickness for fly ash nanoparticles is higher than paramagnetic and thermal conductivity of paramagnetic is higher than fly ash nanoparticles. The paramagnetic nanoparticles are, therefore, the best coolant. The comparison of the finite element method with previous researches is tabled and found in a good agreement.","PeriodicalId":297187,"journal":{"name":"Modern Concepts in Material Science","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Fly Ash and Paramagnetic Nanoparticles with Hybrid Base Fluid Due to Applied Magnetic Dipole in a Stretching Sheet with Momentum Slip Condition: FEM Approach\",\"authors\":\"Y. Nie\",\"doi\":\"10.33552/MCMS.2020.03.000554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a comprehensive analysis is performed for fly ash and paramagnetic ( ) a T nanoparticles with a hybrid base and micro polar fluid with momentum slip conditions over a stretching sheet. With the aid of the similarity transformation, the PDEs obtained are transmuted in the nonlinear ODE system, after which the numerical simulation is performed with the finite element method. The effect of physical parameters on velocity, micro rotation, and temperature are analyzed graphically. Results reveal that the velocity boundary layer thickness for fly ash nanoparticles is higher than paramagnetic and thermal conductivity of paramagnetic is higher than fly ash nanoparticles. The paramagnetic nanoparticles are, therefore, the best coolant. The comparison of the finite element method with previous researches is tabled and found in a good agreement.\",\"PeriodicalId\":297187,\"journal\":{\"name\":\"Modern Concepts in Material Science\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Concepts in Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33552/MCMS.2020.03.000554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Concepts in Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33552/MCMS.2020.03.000554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Fly Ash and Paramagnetic Nanoparticles with Hybrid Base Fluid Due to Applied Magnetic Dipole in a Stretching Sheet with Momentum Slip Condition: FEM Approach
In this article, a comprehensive analysis is performed for fly ash and paramagnetic ( ) a T nanoparticles with a hybrid base and micro polar fluid with momentum slip conditions over a stretching sheet. With the aid of the similarity transformation, the PDEs obtained are transmuted in the nonlinear ODE system, after which the numerical simulation is performed with the finite element method. The effect of physical parameters on velocity, micro rotation, and temperature are analyzed graphically. Results reveal that the velocity boundary layer thickness for fly ash nanoparticles is higher than paramagnetic and thermal conductivity of paramagnetic is higher than fly ash nanoparticles. The paramagnetic nanoparticles are, therefore, the best coolant. The comparison of the finite element method with previous researches is tabled and found in a good agreement.