基于大数据的能耗预测:平衡预测精度与计算资源

Katarina Grolinger, Miriam A. M. Capretz, Luke Seewald
{"title":"基于大数据的能耗预测:平衡预测精度与计算资源","authors":"Katarina Grolinger, Miriam A. M. Capretz, Luke Seewald","doi":"10.1109/BigDataCongress.2016.27","DOIUrl":null,"url":null,"abstract":"In recent years, advances in sensor technologies and expansion of smart meters have resulted in massive growth of energy data sets. These Big Data have created new opportunities for energy prediction, but at the same time, they impose new challenges for traditional technologies. On the other hand, new approaches for handling and processing these Big Data have emerged, such as MapReduce, Spark, Storm, and Oxdata H2O. This paper explores how findings from machine learning with Big Data can benefit energy consumption prediction. An approach based on local learning with support vector regression (SVR) is presented. Although local learning itself is not a novel concept, it has great potential in the Big Data domain because it reduces computational complexity. The local SVR approach presented here is compared to traditional SVR and to deep neural networks with an H2O machine learning platform for Big Data. Local SVR outperformed both SVR and H2O deep learning in terms of prediction accuracy and computation time. Especially significant was the reduction in training time, local SVR training was an order of magnitude faster than SVR or H2O deep learning.","PeriodicalId":407471,"journal":{"name":"2016 IEEE International Congress on Big Data (BigData Congress)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Energy Consumption Prediction with Big Data: Balancing Prediction Accuracy and Computational Resources\",\"authors\":\"Katarina Grolinger, Miriam A. M. Capretz, Luke Seewald\",\"doi\":\"10.1109/BigDataCongress.2016.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, advances in sensor technologies and expansion of smart meters have resulted in massive growth of energy data sets. These Big Data have created new opportunities for energy prediction, but at the same time, they impose new challenges for traditional technologies. On the other hand, new approaches for handling and processing these Big Data have emerged, such as MapReduce, Spark, Storm, and Oxdata H2O. This paper explores how findings from machine learning with Big Data can benefit energy consumption prediction. An approach based on local learning with support vector regression (SVR) is presented. Although local learning itself is not a novel concept, it has great potential in the Big Data domain because it reduces computational complexity. The local SVR approach presented here is compared to traditional SVR and to deep neural networks with an H2O machine learning platform for Big Data. Local SVR outperformed both SVR and H2O deep learning in terms of prediction accuracy and computation time. Especially significant was the reduction in training time, local SVR training was an order of magnitude faster than SVR or H2O deep learning.\",\"PeriodicalId\":407471,\"journal\":{\"name\":\"2016 IEEE International Congress on Big Data (BigData Congress)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Congress on Big Data (BigData Congress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2016.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2016.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

近年来,传感器技术的进步和智能电表的扩展导致了能源数据集的大量增长。这些大数据为能源预测创造了新的机遇,但同时也给传统技术带来了新的挑战。另一方面,处理和处理这些大数据的新方法已经出现,如MapReduce、Spark、Storm和Oxdata H2O。本文探讨了机器学习与大数据的发现如何有利于能源消耗预测。提出了一种基于支持向量回归的局部学习方法。虽然局部学习本身并不是一个新颖的概念,但它在大数据领域具有很大的潜力,因为它降低了计算复杂度。本文提出的局部SVR方法与传统的SVR方法以及基于大数据H2O机器学习平台的深度神经网络进行了比较。Local SVR在预测精度和计算时间上都优于SVR和H2O深度学习。尤其显著的是训练时间的缩短,局部SVR训练比SVR或H2O深度学习快一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Consumption Prediction with Big Data: Balancing Prediction Accuracy and Computational Resources
In recent years, advances in sensor technologies and expansion of smart meters have resulted in massive growth of energy data sets. These Big Data have created new opportunities for energy prediction, but at the same time, they impose new challenges for traditional technologies. On the other hand, new approaches for handling and processing these Big Data have emerged, such as MapReduce, Spark, Storm, and Oxdata H2O. This paper explores how findings from machine learning with Big Data can benefit energy consumption prediction. An approach based on local learning with support vector regression (SVR) is presented. Although local learning itself is not a novel concept, it has great potential in the Big Data domain because it reduces computational complexity. The local SVR approach presented here is compared to traditional SVR and to deep neural networks with an H2O machine learning platform for Big Data. Local SVR outperformed both SVR and H2O deep learning in terms of prediction accuracy and computation time. Especially significant was the reduction in training time, local SVR training was an order of magnitude faster than SVR or H2O deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信