基于spark的大数据聚类智能k-means设计

Ilham Kusuma, M. A. Ma'sum, Novian Habibie, W. Jatmiko, H. Suhartanto
{"title":"基于spark的大数据聚类智能k-means设计","authors":"Ilham Kusuma, M. A. Ma'sum, Novian Habibie, W. Jatmiko, H. Suhartanto","doi":"10.1109/IWBIS.2016.7872895","DOIUrl":null,"url":null,"abstract":"The growth of data has bring us to the big data generation where the amount of data cannot be computed using conventional environment. There are a lot of computational environment that had been developed to compute big data, one of them is Hadoop that has Distributed File System and MapReduce framework. Spark is newly framework that can be combined with Hadoop and run on top of it. In this paper, we design intelligent k-means based on Spark for big data clustering. Our design is using batch of data instead using original Resilient Distributed Dataset (RDD). We compare our design with the implementation that using original RDD of data. Result of experiment shows that implementation using batch of data is faster than the implementation using original RDD.","PeriodicalId":193821,"journal":{"name":"2016 International Workshop on Big Data and Information Security (IWBIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Design of intelligent k-means based on spark for big data clustering\",\"authors\":\"Ilham Kusuma, M. A. Ma'sum, Novian Habibie, W. Jatmiko, H. Suhartanto\",\"doi\":\"10.1109/IWBIS.2016.7872895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth of data has bring us to the big data generation where the amount of data cannot be computed using conventional environment. There are a lot of computational environment that had been developed to compute big data, one of them is Hadoop that has Distributed File System and MapReduce framework. Spark is newly framework that can be combined with Hadoop and run on top of it. In this paper, we design intelligent k-means based on Spark for big data clustering. Our design is using batch of data instead using original Resilient Distributed Dataset (RDD). We compare our design with the implementation that using original RDD of data. Result of experiment shows that implementation using batch of data is faster than the implementation using original RDD.\",\"PeriodicalId\":193821,\"journal\":{\"name\":\"2016 International Workshop on Big Data and Information Security (IWBIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Workshop on Big Data and Information Security (IWBIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBIS.2016.7872895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Workshop on Big Data and Information Security (IWBIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBIS.2016.7872895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

数据的增长将我们带到了大数据的产生,而传统的环境无法计算数据量。目前已经开发了很多计算环境来计算大数据,其中之一就是拥有分布式文件系统和MapReduce框架的Hadoop。Spark是一个新的框架,可以与Hadoop结合并在其上运行。本文设计了基于Spark的大数据聚类智能k-means。我们的设计是使用批量数据,而不是使用原始的弹性分布式数据集(RDD)。我们将我们的设计与使用原始数据RDD的实现进行了比较。实验结果表明,使用批量数据的实现比使用原始RDD的实现速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of intelligent k-means based on spark for big data clustering
The growth of data has bring us to the big data generation where the amount of data cannot be computed using conventional environment. There are a lot of computational environment that had been developed to compute big data, one of them is Hadoop that has Distributed File System and MapReduce framework. Spark is newly framework that can be combined with Hadoop and run on top of it. In this paper, we design intelligent k-means based on Spark for big data clustering. Our design is using batch of data instead using original Resilient Distributed Dataset (RDD). We compare our design with the implementation that using original RDD of data. Result of experiment shows that implementation using batch of data is faster than the implementation using original RDD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信