曲线和几何无关分量的真正隐式化

M. Fioravanti, L. González-Vega, A. Seidl
{"title":"曲线和几何无关分量的真正隐式化","authors":"M. Fioravanti, L. González-Vega, A. Seidl","doi":"10.1145/1277500.1277515","DOIUrl":null,"url":null,"abstract":"Real implicitization of parametric curves has important applications in computer aided geometric design. Implicitization of parametric curves by resultant computations may lead to super uous isolated points. Hence, an exact implicit description should consist of equations and further conditions excluding these geometric extraneous components. Although a real implicit description of this kind can be obtained by real quantifier elimination, we give a direct way to find the conditions to add for an exact description. This results in a more effective algorithm and nicer formulas.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real implicitization of curves and geometric extraneous components\",\"authors\":\"M. Fioravanti, L. González-Vega, A. Seidl\",\"doi\":\"10.1145/1277500.1277515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real implicitization of parametric curves has important applications in computer aided geometric design. Implicitization of parametric curves by resultant computations may lead to super uous isolated points. Hence, an exact implicit description should consist of equations and further conditions excluding these geometric extraneous components. Although a real implicit description of this kind can be obtained by real quantifier elimination, we give a direct way to find the conditions to add for an exact description. This results in a more effective algorithm and nicer formulas.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1277500.1277515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

参数曲线的真实隐式化在计算机辅助几何设计中有着重要的应用。结果计算的参数曲线的隐式化可能导致超级孤立点。因此,一个精确的隐式描述应该包括方程和排除这些几何无关分量的进一步条件。虽然这种实隐式描述可以通过消去实量词得到,但我们给出了一种直接的方法来寻找精确描述的附加条件。这将产生更有效的算法和更好的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real implicitization of curves and geometric extraneous components
Real implicitization of parametric curves has important applications in computer aided geometric design. Implicitization of parametric curves by resultant computations may lead to super uous isolated points. Hence, an exact implicit description should consist of equations and further conditions excluding these geometric extraneous components. Although a real implicit description of this kind can be obtained by real quantifier elimination, we give a direct way to find the conditions to add for an exact description. This results in a more effective algorithm and nicer formulas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信