熟能生巧:使用深度强化学习的机器人音乐家学习路径规划

Lamtharn Hantrakul, Zachary Kondak, Gil Weinberg
{"title":"熟能生巧:使用深度强化学习的机器人音乐家学习路径规划","authors":"Lamtharn Hantrakul, Zachary Kondak, Gil Weinberg","doi":"10.1145/3212721.3212839","DOIUrl":null,"url":null,"abstract":"When a pianist effortlessly glides across the keyboard during an improvised solo, the musician is executing a series of movements informed by years of practice ingrained with musical knowledge. This paper proposes an analogous approach that enables Robotic Musicians to learn about its degrees of freedom and physical constraints through \"practice\" in the form of Deep Reinforcement Learning. We use a Deep Q Network (DQN) to train a virtual agent representing a real 4-armed robotic musician, to motion-plan the optimal sequence of movements given a musical sequence through a learned strategy instead of a search strategy. Early results from our proof-of-concept system demonstrate that DRL can achieve optimal control of a musical agent, learning a form of bi-manual coordination in the process.","PeriodicalId":330867,"journal":{"name":"Proceedings of the 5th International Conference on Movement and Computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Practice Makes Perfect: Towards Learned Path Planning for Robotic Musicians using Deep Reinforcement Learning\",\"authors\":\"Lamtharn Hantrakul, Zachary Kondak, Gil Weinberg\",\"doi\":\"10.1145/3212721.3212839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When a pianist effortlessly glides across the keyboard during an improvised solo, the musician is executing a series of movements informed by years of practice ingrained with musical knowledge. This paper proposes an analogous approach that enables Robotic Musicians to learn about its degrees of freedom and physical constraints through \\\"practice\\\" in the form of Deep Reinforcement Learning. We use a Deep Q Network (DQN) to train a virtual agent representing a real 4-armed robotic musician, to motion-plan the optimal sequence of movements given a musical sequence through a learned strategy instead of a search strategy. Early results from our proof-of-concept system demonstrate that DRL can achieve optimal control of a musical agent, learning a form of bi-manual coordination in the process.\",\"PeriodicalId\":330867,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Movement and Computing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Movement and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3212721.3212839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Movement and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212721.3212839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当钢琴家在即兴独奏中毫不费力地在键盘上滑动时,音乐家正在执行一系列的动作,这些动作是由多年的音乐知识积累而成的。本文提出了一种类似的方法,使机器人音乐家能够通过深度强化学习形式的“实践”来学习其自由度和物理约束。我们使用深度Q网络(DQN)来训练一个代表真实四臂机器人音乐家的虚拟代理,通过学习策略而不是搜索策略来规划给定音乐序列的最佳动作序列。我们的概念验证系统的早期结果表明,DRL可以实现对音乐代理的最佳控制,在此过程中学习一种双手协调形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practice Makes Perfect: Towards Learned Path Planning for Robotic Musicians using Deep Reinforcement Learning
When a pianist effortlessly glides across the keyboard during an improvised solo, the musician is executing a series of movements informed by years of practice ingrained with musical knowledge. This paper proposes an analogous approach that enables Robotic Musicians to learn about its degrees of freedom and physical constraints through "practice" in the form of Deep Reinforcement Learning. We use a Deep Q Network (DQN) to train a virtual agent representing a real 4-armed robotic musician, to motion-plan the optimal sequence of movements given a musical sequence through a learned strategy instead of a search strategy. Early results from our proof-of-concept system demonstrate that DRL can achieve optimal control of a musical agent, learning a form of bi-manual coordination in the process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信