MWPSNR:一种新的图像保真度度量

K. A. Navas, D. Gayathri, M. Athulya, Anjali Vasudev
{"title":"MWPSNR:一种新的图像保真度度量","authors":"K. A. Navas, D. Gayathri, M. Athulya, Anjali Vasudev","doi":"10.1109/RAICS.2011.6069386","DOIUrl":null,"url":null,"abstract":"Researchers in the field of image and video processing use MSE (Mean Square Error) based fidelity metrics to validate their research results. The most popular MSE-based metrics are PSNR (Peak Signal to Noise Ratio) and WPSNR (Weighted Peak Signal to Noise Ratio). When large quantities of data are to be assessed, subjective metric such as MOS (Mean Opinion Score) is not pragmatic since it needs experts and inordinate amount of time. PSNR and WPSNR are independent of Human Visual System (HVS) parameters and hence they are inappropriate scales to measure potential research results. This paper brings out their inappropriateness and propose a new image fidelity metric called Modified Weighted Peak Signal to Noise Ratio (MWPSNR). This metric has been experimentally proven to be better than PSNR and WPSNR.","PeriodicalId":394515,"journal":{"name":"2011 IEEE Recent Advances in Intelligent Computational Systems","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"MWPSNR: A new image fidelity metric\",\"authors\":\"K. A. Navas, D. Gayathri, M. Athulya, Anjali Vasudev\",\"doi\":\"10.1109/RAICS.2011.6069386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers in the field of image and video processing use MSE (Mean Square Error) based fidelity metrics to validate their research results. The most popular MSE-based metrics are PSNR (Peak Signal to Noise Ratio) and WPSNR (Weighted Peak Signal to Noise Ratio). When large quantities of data are to be assessed, subjective metric such as MOS (Mean Opinion Score) is not pragmatic since it needs experts and inordinate amount of time. PSNR and WPSNR are independent of Human Visual System (HVS) parameters and hence they are inappropriate scales to measure potential research results. This paper brings out their inappropriateness and propose a new image fidelity metric called Modified Weighted Peak Signal to Noise Ratio (MWPSNR). This metric has been experimentally proven to be better than PSNR and WPSNR.\",\"PeriodicalId\":394515,\"journal\":{\"name\":\"2011 IEEE Recent Advances in Intelligent Computational Systems\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Recent Advances in Intelligent Computational Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAICS.2011.6069386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Recent Advances in Intelligent Computational Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2011.6069386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

图像和视频处理领域的研究人员使用基于均方误差(MSE)的保真度度量来验证他们的研究结果。最流行的基于mse的指标是PSNR(峰值信噪比)和WPSNR(加权峰值信噪比)。当需要评估大量数据时,主观度量(如MOS (Mean Opinion Score))并不实用,因为它需要专家和过多的时间。PSNR和WPSNR与人类视觉系统(HVS)参数无关,因此不适合作为衡量潜在研究结果的尺度。提出了一种新的图像保真度度量方法——改进加权峰值信噪比(MWPSNR)。该指标已被实验证明优于PSNR和WPSNR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MWPSNR: A new image fidelity metric
Researchers in the field of image and video processing use MSE (Mean Square Error) based fidelity metrics to validate their research results. The most popular MSE-based metrics are PSNR (Peak Signal to Noise Ratio) and WPSNR (Weighted Peak Signal to Noise Ratio). When large quantities of data are to be assessed, subjective metric such as MOS (Mean Opinion Score) is not pragmatic since it needs experts and inordinate amount of time. PSNR and WPSNR are independent of Human Visual System (HVS) parameters and hence they are inappropriate scales to measure potential research results. This paper brings out their inappropriateness and propose a new image fidelity metric called Modified Weighted Peak Signal to Noise Ratio (MWPSNR). This metric has been experimentally proven to be better than PSNR and WPSNR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信