Allison Matias de Sousa, F. L. Gondim, Gilvan Ribeiro dos Santos, Marcelle Ferreira Moura, Ruth Mesquita Ferreira, D. S. Serra, A. Pimenta, M. L. Oliveira, F. S. Cavalcante
{"title":"从枇杷果中提取的固定油可以防止由生物质引起的室内空气污染引起的呼吸系统组织和功能的改变","authors":"Allison Matias de Sousa, F. L. Gondim, Gilvan Ribeiro dos Santos, Marcelle Ferreira Moura, Ruth Mesquita Ferreira, D. S. Serra, A. Pimenta, M. L. Oliveira, F. S. Cavalcante","doi":"10.32435/envsmoke-2023-0019","DOIUrl":null,"url":null,"abstract":"The reuse of biomass residue can be in different ways, such as pellets obtained through the compaction of green coconut shell. Despite the advantages, studies relate the burning of biomass as the main source of household air pollution. Indoor pollution is also correlated with serious consequences for groups considered at risk, such as asthmatics. As a result, the population is looking for alternative and low-cost treatments through natural products with anti-inflammatory characteristics, such as the fixed oil of Caryocar coriaceum (CC). In the present study, we evaluated the effects of oral CC ingestion on the respiratory system of mice submitted to a model of chronic exposure to smoke from the combustion of coconut shell pellets (CSP) and submitted to the OVA-induced asthma model. We performed analysis of the gaseous composition in the exposure chamber and analyzes of different aspects of the respiratory system. CC could prevent inflammatory cell infiltration and alveolar collapse. Furthermore, it was able to avoid changes in the airway resistance, tissue resistance, elastance, compliance and inspiratory capacity. Our findings demonstrate the effects of long-term exposure to indoor pollution and suggest that dietary intake of CC may be a strategy to prevent respiratory diseases.","PeriodicalId":425332,"journal":{"name":"Environmental Smoke","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FIXED OIL DERIVED FROM Caryocar coriaceum (PEQUI FRUIT) PREVENTS TISSUE AND FUNCTIONAL ALTERATIONS IN THE RESPIRATORY SYSTEM INDUCED HOUSEHOLD AIR POLLUTION ORIGINATING FROM BIOMASS\",\"authors\":\"Allison Matias de Sousa, F. L. Gondim, Gilvan Ribeiro dos Santos, Marcelle Ferreira Moura, Ruth Mesquita Ferreira, D. S. Serra, A. Pimenta, M. L. Oliveira, F. S. Cavalcante\",\"doi\":\"10.32435/envsmoke-2023-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reuse of biomass residue can be in different ways, such as pellets obtained through the compaction of green coconut shell. Despite the advantages, studies relate the burning of biomass as the main source of household air pollution. Indoor pollution is also correlated with serious consequences for groups considered at risk, such as asthmatics. As a result, the population is looking for alternative and low-cost treatments through natural products with anti-inflammatory characteristics, such as the fixed oil of Caryocar coriaceum (CC). In the present study, we evaluated the effects of oral CC ingestion on the respiratory system of mice submitted to a model of chronic exposure to smoke from the combustion of coconut shell pellets (CSP) and submitted to the OVA-induced asthma model. We performed analysis of the gaseous composition in the exposure chamber and analyzes of different aspects of the respiratory system. CC could prevent inflammatory cell infiltration and alveolar collapse. Furthermore, it was able to avoid changes in the airway resistance, tissue resistance, elastance, compliance and inspiratory capacity. Our findings demonstrate the effects of long-term exposure to indoor pollution and suggest that dietary intake of CC may be a strategy to prevent respiratory diseases.\",\"PeriodicalId\":425332,\"journal\":{\"name\":\"Environmental Smoke\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Smoke\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32435/envsmoke-2023-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Smoke","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32435/envsmoke-2023-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FIXED OIL DERIVED FROM Caryocar coriaceum (PEQUI FRUIT) PREVENTS TISSUE AND FUNCTIONAL ALTERATIONS IN THE RESPIRATORY SYSTEM INDUCED HOUSEHOLD AIR POLLUTION ORIGINATING FROM BIOMASS
The reuse of biomass residue can be in different ways, such as pellets obtained through the compaction of green coconut shell. Despite the advantages, studies relate the burning of biomass as the main source of household air pollution. Indoor pollution is also correlated with serious consequences for groups considered at risk, such as asthmatics. As a result, the population is looking for alternative and low-cost treatments through natural products with anti-inflammatory characteristics, such as the fixed oil of Caryocar coriaceum (CC). In the present study, we evaluated the effects of oral CC ingestion on the respiratory system of mice submitted to a model of chronic exposure to smoke from the combustion of coconut shell pellets (CSP) and submitted to the OVA-induced asthma model. We performed analysis of the gaseous composition in the exposure chamber and analyzes of different aspects of the respiratory system. CC could prevent inflammatory cell infiltration and alveolar collapse. Furthermore, it was able to avoid changes in the airway resistance, tissue resistance, elastance, compliance and inspiratory capacity. Our findings demonstrate the effects of long-term exposure to indoor pollution and suggest that dietary intake of CC may be a strategy to prevent respiratory diseases.