J. Muñoz-Ferreras, Zhengyu Peng, R. Gómez‐García, Changzhi Li
{"title":"基于fmcw雷达的生命体征监测中的随机身体运动缓解","authors":"J. Muñoz-Ferreras, Zhengyu Peng, R. Gómez‐García, Changzhi Li","doi":"10.1109/BIOWIRELESS.2016.7445551","DOIUrl":null,"url":null,"abstract":"In noncontact vital-sign-monitoring applications, the cancelation of the random body movement (RBM) becomes critical for a proper tracking. When using Doppler radars, this RBM suppression has been typically carried out through phase measurements obtained from two opposite sides of the human body. In this work, the employment of two frequency-modulated continuous-wave (FMCW) radars to deal with the RBM phenomenon is proposed. An advanced range-bin alignment technique is utilized to derive the range histories from the two transceivers and proceed with the RBM mitigation. Moreover, since this approach is only based on the signal amplitudes, the FMCW radar sensors do not need to be coherent. Simulated results are also reported to corroborate the effectiveness of the devised RBM suppression technique.","PeriodicalId":154090,"journal":{"name":"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Random body movement mitigation for FMCW-radar-based vital-sign monitoring\",\"authors\":\"J. Muñoz-Ferreras, Zhengyu Peng, R. Gómez‐García, Changzhi Li\",\"doi\":\"10.1109/BIOWIRELESS.2016.7445551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In noncontact vital-sign-monitoring applications, the cancelation of the random body movement (RBM) becomes critical for a proper tracking. When using Doppler radars, this RBM suppression has been typically carried out through phase measurements obtained from two opposite sides of the human body. In this work, the employment of two frequency-modulated continuous-wave (FMCW) radars to deal with the RBM phenomenon is proposed. An advanced range-bin alignment technique is utilized to derive the range histories from the two transceivers and proceed with the RBM mitigation. Moreover, since this approach is only based on the signal amplitudes, the FMCW radar sensors do not need to be coherent. Simulated results are also reported to corroborate the effectiveness of the devised RBM suppression technique.\",\"PeriodicalId\":154090,\"journal\":{\"name\":\"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOWIRELESS.2016.7445551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOWIRELESS.2016.7445551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Random body movement mitigation for FMCW-radar-based vital-sign monitoring
In noncontact vital-sign-monitoring applications, the cancelation of the random body movement (RBM) becomes critical for a proper tracking. When using Doppler radars, this RBM suppression has been typically carried out through phase measurements obtained from two opposite sides of the human body. In this work, the employment of two frequency-modulated continuous-wave (FMCW) radars to deal with the RBM phenomenon is proposed. An advanced range-bin alignment technique is utilized to derive the range histories from the two transceivers and proceed with the RBM mitigation. Moreover, since this approach is only based on the signal amplitudes, the FMCW radar sensors do not need to be coherent. Simulated results are also reported to corroborate the effectiveness of the devised RBM suppression technique.