宏基因组分簇问题:聚类马尔可夫序列

Grant Greenberg, Ilan Shomorony
{"title":"宏基因组分簇问题:聚类马尔可夫序列","authors":"Grant Greenberg, Ilan Shomorony","doi":"10.1109/ITW44776.2019.8988939","DOIUrl":null,"url":null,"abstract":"The goal of metagenomics is to study the composition of microbial communities, typically using high-throughput shotgun sequencing. In the metagenomic binning problem, we observe random substrings (called contigs) from a mixture of genomes and want to cluster them according to their genome of origin. Based on the empirical observation that genomes of different bacterial species can be distinguished based on their tetranucleotide frequencies, we model this task as the problem of clustering N sequences generated by M distinct Markov processes, where $M\\ll N$. Utilizing the large-deviation principle for Markov processes, we establish the information-theoretic limit for perfect binning. Specifically, we show that the length of the contigs must scale with the inverse of the Chernoff Information between the two most similar species. Our result also implies that contigs should be binned using the conditional relative entropy as a measure of distance, as opposed to the Euclidean distance often used in practice.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Metagenomic Binning Problem: Clustering Markov Sequences\",\"authors\":\"Grant Greenberg, Ilan Shomorony\",\"doi\":\"10.1109/ITW44776.2019.8988939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of metagenomics is to study the composition of microbial communities, typically using high-throughput shotgun sequencing. In the metagenomic binning problem, we observe random substrings (called contigs) from a mixture of genomes and want to cluster them according to their genome of origin. Based on the empirical observation that genomes of different bacterial species can be distinguished based on their tetranucleotide frequencies, we model this task as the problem of clustering N sequences generated by M distinct Markov processes, where $M\\\\ll N$. Utilizing the large-deviation principle for Markov processes, we establish the information-theoretic limit for perfect binning. Specifically, we show that the length of the contigs must scale with the inverse of the Chernoff Information between the two most similar species. Our result also implies that contigs should be binned using the conditional relative entropy as a measure of distance, as opposed to the Euclidean distance often used in practice.\",\"PeriodicalId\":214379,\"journal\":{\"name\":\"2019 IEEE Information Theory Workshop (ITW)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW44776.2019.8988939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8988939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

宏基因组学的目标是研究微生物群落的组成,通常使用高通量鸟枪测序。在宏基因组分簇问题中,我们从混合基因组中观察随机子串(称为contigs),并希望根据它们的基因组起源对它们进行聚类。根据经验观察,不同细菌的基因组可以根据其四核苷酸频率进行区分,我们将该任务建模为由M个不同的马尔可夫过程生成的N个序列的聚类问题,其中$M\ll N$。利用马尔可夫过程的大偏差原理,建立了完美分簇的信息论极限。具体地说,我们证明了contigs的长度必须与两个最相似物种之间的Chernoff信息的逆成比例。我们的结果还表明,应该使用条件相对熵作为距离度量,而不是在实践中经常使用的欧几里得距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Metagenomic Binning Problem: Clustering Markov Sequences
The goal of metagenomics is to study the composition of microbial communities, typically using high-throughput shotgun sequencing. In the metagenomic binning problem, we observe random substrings (called contigs) from a mixture of genomes and want to cluster them according to their genome of origin. Based on the empirical observation that genomes of different bacterial species can be distinguished based on their tetranucleotide frequencies, we model this task as the problem of clustering N sequences generated by M distinct Markov processes, where $M\ll N$. Utilizing the large-deviation principle for Markov processes, we establish the information-theoretic limit for perfect binning. Specifically, we show that the length of the contigs must scale with the inverse of the Chernoff Information between the two most similar species. Our result also implies that contigs should be binned using the conditional relative entropy as a measure of distance, as opposed to the Euclidean distance often used in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信