人体传感器网络无线脑信号采集电路

Shuenn-Yuh Lee, Jia-Hua Hong, Liang-Hung Wang
{"title":"人体传感器网络无线脑信号采集电路","authors":"Shuenn-Yuh Lee, Jia-Hua Hong, Liang-Hung Wang","doi":"10.1109/ICCI-CC.2012.6311129","DOIUrl":null,"url":null,"abstract":"The paper presents the proposed wireless brain signal acquisition circuits for body sensor network. Considering the power-efficient communication in the body sensor network, the required low-power analog integrated circuits (ICs) are developed for a wireless brain signal acquisition system. To acquire the electroencephalogram (EEG) signal, this paper proposes an analog front-end (AFE) circuit, including only one low-noise amplifier with chopping techniques and one high-pass sigma-delta modulator (HPSDM), which can be applied as a sensing circuit for EEG signal acquisition systems. To transmit the EEG signal through wireless communication, a quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and up-conversion mixer are also developed. In the receiver, a 2.4 GHz fully integrated CMOS radio-frequency front-end is also implemented. The circuits have been implemented to fit the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless EEG acquisition systems have been fabricated using a 0.18 μm TSMC CMOS standard process. The measured results reveal that the proposed low-power analog front-end ICs can be used for the wireless brain signal acquisition.","PeriodicalId":427778,"journal":{"name":"2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wireless brain signal acquisition circuits for body sensor network\",\"authors\":\"Shuenn-Yuh Lee, Jia-Hua Hong, Liang-Hung Wang\",\"doi\":\"10.1109/ICCI-CC.2012.6311129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the proposed wireless brain signal acquisition circuits for body sensor network. Considering the power-efficient communication in the body sensor network, the required low-power analog integrated circuits (ICs) are developed for a wireless brain signal acquisition system. To acquire the electroencephalogram (EEG) signal, this paper proposes an analog front-end (AFE) circuit, including only one low-noise amplifier with chopping techniques and one high-pass sigma-delta modulator (HPSDM), which can be applied as a sensing circuit for EEG signal acquisition systems. To transmit the EEG signal through wireless communication, a quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and up-conversion mixer are also developed. In the receiver, a 2.4 GHz fully integrated CMOS radio-frequency front-end is also implemented. The circuits have been implemented to fit the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless EEG acquisition systems have been fabricated using a 0.18 μm TSMC CMOS standard process. The measured results reveal that the proposed low-power analog front-end ICs can be used for the wireless brain signal acquisition.\",\"PeriodicalId\":427778,\"journal\":{\"name\":\"2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2012.6311129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2012.6311129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于人体传感器网络的无线脑信号采集电路。考虑到人体传感器网络中的低功耗通信,开发了一种无线脑信号采集系统所需的低功耗模拟集成电路(ic)。为了获取脑电图信号,本文提出了一种模拟前端(AFE)电路,该电路仅包括一个具有斩波技术的低噪声放大器和一个高通σ - δ调制器(HPSDM),可作为脑电图信号采集系统的传感电路。为了实现脑电图信号的无线传输,设计了正交CMOS压控振荡器和带功率放大器和上变频混频器的2.4 GHz直接转换发射机。在接收机中,还实现了2.4 GHz全集成CMOS射频前端。电路的实现符合IEEE 802.15.4 2.4 GHz标准的规范。采用0.18 μm TSMC CMOS标准工艺制作了无线脑电信号采集系统的低功耗集成电路。实验结果表明,所设计的低功耗模拟前端集成电路可用于无线脑信号采集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wireless brain signal acquisition circuits for body sensor network
The paper presents the proposed wireless brain signal acquisition circuits for body sensor network. Considering the power-efficient communication in the body sensor network, the required low-power analog integrated circuits (ICs) are developed for a wireless brain signal acquisition system. To acquire the electroencephalogram (EEG) signal, this paper proposes an analog front-end (AFE) circuit, including only one low-noise amplifier with chopping techniques and one high-pass sigma-delta modulator (HPSDM), which can be applied as a sensing circuit for EEG signal acquisition systems. To transmit the EEG signal through wireless communication, a quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and up-conversion mixer are also developed. In the receiver, a 2.4 GHz fully integrated CMOS radio-frequency front-end is also implemented. The circuits have been implemented to fit the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless EEG acquisition systems have been fabricated using a 0.18 μm TSMC CMOS standard process. The measured results reveal that the proposed low-power analog front-end ICs can be used for the wireless brain signal acquisition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信