社会音乐服务推荐的异质性研究

HetRec '10 Pub Date : 2010-09-26 DOI:10.1145/1869446.1869447
Alejandro Bellogín, Iván Cantador, P. Castells
{"title":"社会音乐服务推荐的异质性研究","authors":"Alejandro Bellogín, Iván Cantador, P. Castells","doi":"10.1145/1869446.1869447","DOIUrl":null,"url":null,"abstract":"We present a preliminarily study on the influence of different sources of information in Web 2.0 systems on recommendation. Aiming to identify which are the sources of information (ratings, tags, social contacts, etc.) most valuable for recommendation, we evaluate a number of content-based, collaborative filtering and social recommenders on a heterogeneous dataset obtained from Last.fm. Moreover, aiming to investigate whether and how fusion of such information sources can benefit individual recommendation approaches, we propose various metrics to measure coverage, overlap, diversity and novelty between different sets of recommendations. The obtained results show that, in Last.fm, social tagging and explicit social networking information provide effective and heterogeneous item recommendations. Moreover, they give first insights on the feasibility of exploiting the above non performance recommendation characteristics by hybrid approaches.","PeriodicalId":258506,"journal":{"name":"HetRec '10","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"A study of heterogeneity in recommendations for a social music service\",\"authors\":\"Alejandro Bellogín, Iván Cantador, P. Castells\",\"doi\":\"10.1145/1869446.1869447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a preliminarily study on the influence of different sources of information in Web 2.0 systems on recommendation. Aiming to identify which are the sources of information (ratings, tags, social contacts, etc.) most valuable for recommendation, we evaluate a number of content-based, collaborative filtering and social recommenders on a heterogeneous dataset obtained from Last.fm. Moreover, aiming to investigate whether and how fusion of such information sources can benefit individual recommendation approaches, we propose various metrics to measure coverage, overlap, diversity and novelty between different sets of recommendations. The obtained results show that, in Last.fm, social tagging and explicit social networking information provide effective and heterogeneous item recommendations. Moreover, they give first insights on the feasibility of exploiting the above non performance recommendation characteristics by hybrid approaches.\",\"PeriodicalId\":258506,\"journal\":{\"name\":\"HetRec '10\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HetRec '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1869446.1869447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HetRec '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869446.1869447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

我们对Web 2.0系统中不同信息来源对推荐的影响进行了初步研究。为了确定哪些信息源(评分、标签、社交联系人等)对推荐最有价值,我们在Last.fm获得的异构数据集上评估了许多基于内容的、协同过滤的和社交推荐器。此外,为了研究这些信息源的融合是否以及如何有利于个人推荐方法,我们提出了各种指标来衡量不同推荐集之间的覆盖率、重叠、多样性和新颖性。所得结果表明,最后。Fm、社会标签和显式社会网络信息提供了有效的异构项目推荐。此外,他们首次提出了利用混合方法利用上述非绩效推荐特征的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of heterogeneity in recommendations for a social music service
We present a preliminarily study on the influence of different sources of information in Web 2.0 systems on recommendation. Aiming to identify which are the sources of information (ratings, tags, social contacts, etc.) most valuable for recommendation, we evaluate a number of content-based, collaborative filtering and social recommenders on a heterogeneous dataset obtained from Last.fm. Moreover, aiming to investigate whether and how fusion of such information sources can benefit individual recommendation approaches, we propose various metrics to measure coverage, overlap, diversity and novelty between different sets of recommendations. The obtained results show that, in Last.fm, social tagging and explicit social networking information provide effective and heterogeneous item recommendations. Moreover, they give first insights on the feasibility of exploiting the above non performance recommendation characteristics by hybrid approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信