{"title":"在统计数据库中寻找真相","authors":"Tien-Duc Cao, I. Manolescu, Xavier Tannier","doi":"10.1145/3201463.3201467","DOIUrl":null,"url":null,"abstract":"The proliferation of falsehood and misinformation, in particular through the Web, has lead to increasing energy being invested into journalistic fact-checking. Fact-checking journalists typically check the accuracy of a claim against some trusted data source. Statistic databases such as those compiled by state agencies are often used as trusted data sources, as they contain valuable, high-quality information. However, their usability is limited when they are shared in a format such as HTML or spreadsheets: this makes it hard to find the most relevant dataset for checking a specific claim, or to quickly extract from a dataset the best answer to a given query. We present a novel algorithm enabling the exploitation of such statistic tables, by (i) identifying the statistic datasets most relevant for a given fact-checking query, and (ii) extracting from each dataset the best specific (precise) query answer it may contain. We have implemented our approach and experimented on the complete corpus of statistics obtained from INSEE, the French national statistic institute. Our experiments and comparisons demonstrate the effectiveness of our proposed method.","PeriodicalId":365496,"journal":{"name":"Proceedings of the 21st International Workshop on the Web and Databases","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Searching for Truth in a Database of Statistics\",\"authors\":\"Tien-Duc Cao, I. Manolescu, Xavier Tannier\",\"doi\":\"10.1145/3201463.3201467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of falsehood and misinformation, in particular through the Web, has lead to increasing energy being invested into journalistic fact-checking. Fact-checking journalists typically check the accuracy of a claim against some trusted data source. Statistic databases such as those compiled by state agencies are often used as trusted data sources, as they contain valuable, high-quality information. However, their usability is limited when they are shared in a format such as HTML or spreadsheets: this makes it hard to find the most relevant dataset for checking a specific claim, or to quickly extract from a dataset the best answer to a given query. We present a novel algorithm enabling the exploitation of such statistic tables, by (i) identifying the statistic datasets most relevant for a given fact-checking query, and (ii) extracting from each dataset the best specific (precise) query answer it may contain. We have implemented our approach and experimented on the complete corpus of statistics obtained from INSEE, the French national statistic institute. Our experiments and comparisons demonstrate the effectiveness of our proposed method.\",\"PeriodicalId\":365496,\"journal\":{\"name\":\"Proceedings of the 21st International Workshop on the Web and Databases\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st International Workshop on the Web and Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3201463.3201467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Workshop on the Web and Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3201463.3201467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The proliferation of falsehood and misinformation, in particular through the Web, has lead to increasing energy being invested into journalistic fact-checking. Fact-checking journalists typically check the accuracy of a claim against some trusted data source. Statistic databases such as those compiled by state agencies are often used as trusted data sources, as they contain valuable, high-quality information. However, their usability is limited when they are shared in a format such as HTML or spreadsheets: this makes it hard to find the most relevant dataset for checking a specific claim, or to quickly extract from a dataset the best answer to a given query. We present a novel algorithm enabling the exploitation of such statistic tables, by (i) identifying the statistic datasets most relevant for a given fact-checking query, and (ii) extracting from each dataset the best specific (precise) query answer it may contain. We have implemented our approach and experimented on the complete corpus of statistics obtained from INSEE, the French national statistic institute. Our experiments and comparisons demonstrate the effectiveness of our proposed method.