带注意的递归神经网络英汉互译

Kriti Nemkul, S. Shakya
{"title":"带注意的递归神经网络英汉互译","authors":"Kriti Nemkul, S. Shakya","doi":"10.1109/ICCCIS51004.2021.9397185","DOIUrl":null,"url":null,"abstract":"Machine Translation, an automated system that intakes the text from the source language as an input, applies some computation on that input and gives the equivalent text in the target language without any human involvement. This research work focuses on developing the models for English to Nepali sentence translation incorporating Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM) with attention. Bilingual Evaluation Understudy (BLEU) Score is calculated to evaluate the efficiency of the model. Different parameters has been used to test the model. The model has been tested with neural network layer 2 and 4 and with hidden units 128, 256 and 512. The GRU cells in encoder and decoder with attention with 2 layer of neural network and 512 hidden units appears to be better in translating the English sentences into Nepali sentences with highest BLEU score 12.3.","PeriodicalId":316752,"journal":{"name":"2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"English to Nepali Sentence Translation Using Recurrent Neural Network with Attention\",\"authors\":\"Kriti Nemkul, S. Shakya\",\"doi\":\"10.1109/ICCCIS51004.2021.9397185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Translation, an automated system that intakes the text from the source language as an input, applies some computation on that input and gives the equivalent text in the target language without any human involvement. This research work focuses on developing the models for English to Nepali sentence translation incorporating Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM) with attention. Bilingual Evaluation Understudy (BLEU) Score is calculated to evaluate the efficiency of the model. Different parameters has been used to test the model. The model has been tested with neural network layer 2 and 4 and with hidden units 128, 256 and 512. The GRU cells in encoder and decoder with attention with 2 layer of neural network and 512 hidden units appears to be better in translating the English sentences into Nepali sentences with highest BLEU score 12.3.\",\"PeriodicalId\":316752,\"journal\":{\"name\":\"2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCIS51004.2021.9397185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCIS51004.2021.9397185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器翻译是一种自动系统,它从源语言中输入文本作为输入,对输入进行一些计算,并在没有任何人工参与的情况下给出目标语言的等效文本。本研究的重点是建立带注意的门控循环单元(GRU)和长短期记忆(LSTM)的英语到尼泊尔语句子翻译模型。计算双语评估替补(BLEU)分数来评估模型的效率。使用了不同的参数来测试模型。该模型在神经网络第2层和第4层以及隐藏单元128、256和512上进行了测试。具有2层神经网络和512个隐藏单元的编码器和解码器中的GRU细胞在将英语句子翻译成BLEU得分最高的尼泊尔语句子时表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
English to Nepali Sentence Translation Using Recurrent Neural Network with Attention
Machine Translation, an automated system that intakes the text from the source language as an input, applies some computation on that input and gives the equivalent text in the target language without any human involvement. This research work focuses on developing the models for English to Nepali sentence translation incorporating Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM) with attention. Bilingual Evaluation Understudy (BLEU) Score is calculated to evaluate the efficiency of the model. Different parameters has been used to test the model. The model has been tested with neural network layer 2 and 4 and with hidden units 128, 256 and 512. The GRU cells in encoder and decoder with attention with 2 layer of neural network and 512 hidden units appears to be better in translating the English sentences into Nepali sentences with highest BLEU score 12.3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信