基于两阶段跨域迁移学习的SAR舰船图像检测

Xu Wang, Huaji Zhou, Zheng Chen, Jing Bai, Junjie Ren, Jiao Shi
{"title":"基于两阶段跨域迁移学习的SAR舰船图像检测","authors":"Xu Wang, Huaji Zhou, Zheng Chen, Jing Bai, Junjie Ren, Jiao Shi","doi":"10.1109/IGARSS46834.2022.9883172","DOIUrl":null,"url":null,"abstract":"Synthetic Aperture Radar is superior to optical sensors in that it can identify ships at all hours and on all days. Deep learning-based object detection relies on huge amounts of data, yet SAR ship images are challenging to obtain and label. A few-shot cross-domain transfer learning approach for SAR image ship detection is used in this paper. It is divided into two stages: the first uses a large volume of optical remote sensing ship images as the source domain training detection framework, and the second employs SAR ship images and optical remote sensing ship images to create a few-shot balanced subset fine-tuning detection framework. Use a metric learning-based prediction box classifier instead of a fully connected prediction box classifier. When fine-tuning the whole detection frame using the metric learning-based pre-diction frame classifier, the experiments show that an AP50 of 55.99% can be reached with only 10 SAR ship images.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Few-Shot SAR Ship Image Detection Using Two-Stage Cross-Domain Transfer Learning\",\"authors\":\"Xu Wang, Huaji Zhou, Zheng Chen, Jing Bai, Junjie Ren, Jiao Shi\",\"doi\":\"10.1109/IGARSS46834.2022.9883172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic Aperture Radar is superior to optical sensors in that it can identify ships at all hours and on all days. Deep learning-based object detection relies on huge amounts of data, yet SAR ship images are challenging to obtain and label. A few-shot cross-domain transfer learning approach for SAR image ship detection is used in this paper. It is divided into two stages: the first uses a large volume of optical remote sensing ship images as the source domain training detection framework, and the second employs SAR ship images and optical remote sensing ship images to create a few-shot balanced subset fine-tuning detection framework. Use a metric learning-based prediction box classifier instead of a fully connected prediction box classifier. When fine-tuning the whole detection frame using the metric learning-based pre-diction frame classifier, the experiments show that an AP50 of 55.99% can be reached with only 10 SAR ship images.\",\"PeriodicalId\":426003,\"journal\":{\"name\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS46834.2022.9883172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9883172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

合成孔径雷达优于光学传感器,因为它可以在任何时间和任何天识别船只。基于深度学习的目标检测依赖于大量的数据,但SAR船舶图像的获取和标记具有挑战性。本文提出了一种基于多镜头跨域迁移学习的SAR图像船舶检测方法。该算法分为两个阶段:第一阶段利用大量光学遥感舰船图像作为源域训练检测框架,第二阶段利用SAR舰船图像和光学遥感舰船图像构建少镜头平衡子集微调检测框架。使用基于度量学习的预测盒分类器,而不是全连接的预测盒分类器。利用基于度量学习的预测帧分类器对整个检测帧进行微调,实验表明,仅用10幅SAR舰船图像即可达到55.99%的AP50。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Few-Shot SAR Ship Image Detection Using Two-Stage Cross-Domain Transfer Learning
Synthetic Aperture Radar is superior to optical sensors in that it can identify ships at all hours and on all days. Deep learning-based object detection relies on huge amounts of data, yet SAR ship images are challenging to obtain and label. A few-shot cross-domain transfer learning approach for SAR image ship detection is used in this paper. It is divided into two stages: the first uses a large volume of optical remote sensing ship images as the source domain training detection framework, and the second employs SAR ship images and optical remote sensing ship images to create a few-shot balanced subset fine-tuning detection framework. Use a metric learning-based prediction box classifier instead of a fully connected prediction box classifier. When fine-tuning the whole detection frame using the metric learning-based pre-diction frame classifier, the experiments show that an AP50 of 55.99% can be reached with only 10 SAR ship images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信