{"title":"基于人脸运动数字图像的学生电子实时监控系统的构建","authors":"Nagham Saeed, H. M. Ahmed","doi":"10.1109/ICOASE56293.2022.10075587","DOIUrl":null,"url":null,"abstract":"The spread of the Corona Virus pandemic on a global scale had a great impact on the trend towards e-learning. In the virtual exams the student can take his exams online without any papers, in addition to the correction and electronic monitoring of the exams. Tests are supervised and controlled by a camera and proven cheat-checking tools. This technology has opened the doors of academic institutions for distance learning to be wide spread without any problems at all. In this paper, a proposed model was built by linking a computer network using a server/client model because it is a system that distributes tasks between the two. The main computer that acts as a server (exam observer) is connected to a group of sub-computers (students) who are being tested and these devices are considered the set of clients. The proposed student face recognition system is run on each computer (client) in order to identify and verify the identity of the student. When another face is detected, the program sends a warning signal to the server. Thus, the concerned student is alerted. This mechanism helps examinees reduce cheating cases in early time. The results obtained from the face recognition showed high accuracy despite the large number of students' faces. The performance speed was in line with the test performance requirements, handling 1,081 real photos and adding 960 photos.","PeriodicalId":297211,"journal":{"name":"2022 4th International Conference on Advanced Science and Engineering (ICOASE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Building a Real-Time System to Monitor Students Electronically Based on Digital Images of Face Movement\",\"authors\":\"Nagham Saeed, H. M. Ahmed\",\"doi\":\"10.1109/ICOASE56293.2022.10075587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spread of the Corona Virus pandemic on a global scale had a great impact on the trend towards e-learning. In the virtual exams the student can take his exams online without any papers, in addition to the correction and electronic monitoring of the exams. Tests are supervised and controlled by a camera and proven cheat-checking tools. This technology has opened the doors of academic institutions for distance learning to be wide spread without any problems at all. In this paper, a proposed model was built by linking a computer network using a server/client model because it is a system that distributes tasks between the two. The main computer that acts as a server (exam observer) is connected to a group of sub-computers (students) who are being tested and these devices are considered the set of clients. The proposed student face recognition system is run on each computer (client) in order to identify and verify the identity of the student. When another face is detected, the program sends a warning signal to the server. Thus, the concerned student is alerted. This mechanism helps examinees reduce cheating cases in early time. The results obtained from the face recognition showed high accuracy despite the large number of students' faces. The performance speed was in line with the test performance requirements, handling 1,081 real photos and adding 960 photos.\",\"PeriodicalId\":297211,\"journal\":{\"name\":\"2022 4th International Conference on Advanced Science and Engineering (ICOASE)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Advanced Science and Engineering (ICOASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOASE56293.2022.10075587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Advanced Science and Engineering (ICOASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOASE56293.2022.10075587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Building a Real-Time System to Monitor Students Electronically Based on Digital Images of Face Movement
The spread of the Corona Virus pandemic on a global scale had a great impact on the trend towards e-learning. In the virtual exams the student can take his exams online without any papers, in addition to the correction and electronic monitoring of the exams. Tests are supervised and controlled by a camera and proven cheat-checking tools. This technology has opened the doors of academic institutions for distance learning to be wide spread without any problems at all. In this paper, a proposed model was built by linking a computer network using a server/client model because it is a system that distributes tasks between the two. The main computer that acts as a server (exam observer) is connected to a group of sub-computers (students) who are being tested and these devices are considered the set of clients. The proposed student face recognition system is run on each computer (client) in order to identify and verify the identity of the student. When another face is detected, the program sends a warning signal to the server. Thus, the concerned student is alerted. This mechanism helps examinees reduce cheating cases in early time. The results obtained from the face recognition showed high accuracy despite the large number of students' faces. The performance speed was in line with the test performance requirements, handling 1,081 real photos and adding 960 photos.