基于位置的多智能体动态实时人群仿真

Tomer Weiss, Alan Litteneker, Chenfanfu Jiang, Demetri Terzopoulos
{"title":"基于位置的多智能体动态实时人群仿真","authors":"Tomer Weiss, Alan Litteneker, Chenfanfu Jiang, Demetri Terzopoulos","doi":"10.1145/3136457.3136462","DOIUrl":null,"url":null,"abstract":"Exploiting the efficiency and stability of Position-Based Dynamics (PBD), we introduce a novel crowd simulation method that runs at interactive rates for hundreds of thousands of agents. Our method enables the detailed modeling of per-agent behavior in a Lagrangian formulation. We model short-range and long-range collision avoidance to simulate both sparse and dense crowds. On the particles representing agents, we formulate a set of positional constraints that can be readily integrated into a standard PBD solver. We augment the tentative particle motions with planning velocities to determine the preferred velocities of agents, and project the positions onto the constraint manifold to eliminate colliding configurations. The local short-range interaction is represented with collision and frictional contact between agents, as in the discrete simulation of granular materials. We incorporate a cohesion model for modeling collective behaviors and propose a new constraint for dealing with potential future collisions. Our new method is suitable for use in interactive games.","PeriodicalId":159266,"journal":{"name":"Proceedings of the 10th International Conference on Motion in Games","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Position-based multi-agent dynamics for real-time crowd simulation\",\"authors\":\"Tomer Weiss, Alan Litteneker, Chenfanfu Jiang, Demetri Terzopoulos\",\"doi\":\"10.1145/3136457.3136462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploiting the efficiency and stability of Position-Based Dynamics (PBD), we introduce a novel crowd simulation method that runs at interactive rates for hundreds of thousands of agents. Our method enables the detailed modeling of per-agent behavior in a Lagrangian formulation. We model short-range and long-range collision avoidance to simulate both sparse and dense crowds. On the particles representing agents, we formulate a set of positional constraints that can be readily integrated into a standard PBD solver. We augment the tentative particle motions with planning velocities to determine the preferred velocities of agents, and project the positions onto the constraint manifold to eliminate colliding configurations. The local short-range interaction is represented with collision and frictional contact between agents, as in the discrete simulation of granular materials. We incorporate a cohesion model for modeling collective behaviors and propose a new constraint for dealing with potential future collisions. Our new method is suitable for use in interactive games.\",\"PeriodicalId\":159266,\"journal\":{\"name\":\"Proceedings of the 10th International Conference on Motion in Games\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Conference on Motion in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3136457.3136462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Motion in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3136457.3136462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

利用基于位置动力学(PBD)的效率和稳定性,我们引入了一种新的人群仿真方法,该方法以交互速率运行数十万个智能体。我们的方法能够在拉格朗日公式中对每个代理的行为进行详细的建模。我们建立了短程和远程避碰模型来模拟稀疏和密集人群。在代表代理的粒子上,我们制定了一组位置约束,可以很容易地集成到标准PBD求解器中。我们用规划速度增强粒子的暂定运动来确定智能体的首选速度,并将位置投影到约束流形上以消除碰撞构型。局部的短程相互作用用agent之间的碰撞和摩擦接触来表示,就像在粒状材料的离散模拟中一样。我们结合了一个内聚模型来模拟集体行为,并提出了一个新的约束来处理潜在的未来碰撞。我们的新方法适用于互动游戏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Position-based multi-agent dynamics for real-time crowd simulation
Exploiting the efficiency and stability of Position-Based Dynamics (PBD), we introduce a novel crowd simulation method that runs at interactive rates for hundreds of thousands of agents. Our method enables the detailed modeling of per-agent behavior in a Lagrangian formulation. We model short-range and long-range collision avoidance to simulate both sparse and dense crowds. On the particles representing agents, we formulate a set of positional constraints that can be readily integrated into a standard PBD solver. We augment the tentative particle motions with planning velocities to determine the preferred velocities of agents, and project the positions onto the constraint manifold to eliminate colliding configurations. The local short-range interaction is represented with collision and frictional contact between agents, as in the discrete simulation of granular materials. We incorporate a cohesion model for modeling collective behaviors and propose a new constraint for dealing with potential future collisions. Our new method is suitable for use in interactive games.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信