关系异构图神经网络

Yu Jielin, Wei Zukuan
{"title":"关系异构图神经网络","authors":"Yu Jielin, Wei Zukuan","doi":"10.1109/ICCWAMTIP56608.2022.10016506","DOIUrl":null,"url":null,"abstract":"In heterogeneous graph, we can mine high-order neighbor information or semantic information using meta-path, or only use the original connection, and then obtain high-order neighbor information indirectly through residual connections. Both two methods can get good results, but the latter can improve the efficiency without prior knowledge and meta-path mining. We take the second approach, proposing a novel relation heterogeneous graph neural network (RHGN) which adds edge features to the message aggregation of nodes and updates edge information by comparing different edge types through auxiliary tasks. Extensive experiments on two real-world heterogeneous graphs of node classification tasks show that our proposed model works better.","PeriodicalId":159508,"journal":{"name":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relation Heterogeneous Graph Neural Network\",\"authors\":\"Yu Jielin, Wei Zukuan\",\"doi\":\"10.1109/ICCWAMTIP56608.2022.10016506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In heterogeneous graph, we can mine high-order neighbor information or semantic information using meta-path, or only use the original connection, and then obtain high-order neighbor information indirectly through residual connections. Both two methods can get good results, but the latter can improve the efficiency without prior knowledge and meta-path mining. We take the second approach, proposing a novel relation heterogeneous graph neural network (RHGN) which adds edge features to the message aggregation of nodes and updates edge information by comparing different edge types through auxiliary tasks. Extensive experiments on two real-world heterogeneous graphs of node classification tasks show that our proposed model works better.\",\"PeriodicalId\":159508,\"journal\":{\"name\":\"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在异构图中,我们可以使用元路径挖掘高阶邻居信息或语义信息,或者只使用原始连接,然后通过剩余连接间接获取高阶邻居信息。两种方法都可以获得较好的结果,但后者可以在不需要先验知识和元路径挖掘的情况下提高效率。采用第二种方法,提出了一种新型的关系异构图神经网络(RHGN),该网络在节点的消息聚合中加入边缘特征,并通过辅助任务比较不同的边缘类型来更新边缘信息。在两个真实的节点分类任务异构图上进行的大量实验表明,我们提出的模型效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relation Heterogeneous Graph Neural Network
In heterogeneous graph, we can mine high-order neighbor information or semantic information using meta-path, or only use the original connection, and then obtain high-order neighbor information indirectly through residual connections. Both two methods can get good results, but the latter can improve the efficiency without prior knowledge and meta-path mining. We take the second approach, proposing a novel relation heterogeneous graph neural network (RHGN) which adds edge features to the message aggregation of nodes and updates edge information by comparing different edge types through auxiliary tasks. Extensive experiments on two real-world heterogeneous graphs of node classification tasks show that our proposed model works better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信