基于坐标引导的深度神经网络的肺叶自动分割

Wenjia Wang, Junxuan Chen, Jie Zhao, Ying Chi, Xuansong Xie, Li Zhang, Xiansheng Hua
{"title":"基于坐标引导的深度神经网络的肺叶自动分割","authors":"Wenjia Wang, Junxuan Chen, Jie Zhao, Ying Chi, Xuansong Xie, Li Zhang, Xiansheng Hua","doi":"10.1109/ISBI.2019.8759492","DOIUrl":null,"url":null,"abstract":"The identification of pulmonary lobes is of great importance in disease diagnosis and treatment. A few lung diseases have regional disorders at lobar level. Thus, an accurate segmentation of pulmonary lobes is necessary. In this work, we propose an automated segmentation of pulmonary lobes using coordination-guided deep neural networks from chest CT images. We first employ an automated lung segmentation to extract the lung area from CT image, then exploit volumetric convolutional neural network (V-net) for segmenting the pulmonary lobes. To reduce the misclassification of different lobes, we therefore adopt coordination-guided convolutional layers (CoordConvs) that generate additional feature maps of the positional information of pulmonary lobes. The proposed model is trained and evaluated on a few publicly available datasets and has achieved the state-of-the-art accuracy with a mean Dice coefficient index of $0.947 \\pm 0.044$.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Automated Segmentation Of Pulmonary Lobes Using Coordination-Guided Deep Neural Networks\",\"authors\":\"Wenjia Wang, Junxuan Chen, Jie Zhao, Ying Chi, Xuansong Xie, Li Zhang, Xiansheng Hua\",\"doi\":\"10.1109/ISBI.2019.8759492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of pulmonary lobes is of great importance in disease diagnosis and treatment. A few lung diseases have regional disorders at lobar level. Thus, an accurate segmentation of pulmonary lobes is necessary. In this work, we propose an automated segmentation of pulmonary lobes using coordination-guided deep neural networks from chest CT images. We first employ an automated lung segmentation to extract the lung area from CT image, then exploit volumetric convolutional neural network (V-net) for segmenting the pulmonary lobes. To reduce the misclassification of different lobes, we therefore adopt coordination-guided convolutional layers (CoordConvs) that generate additional feature maps of the positional information of pulmonary lobes. The proposed model is trained and evaluated on a few publicly available datasets and has achieved the state-of-the-art accuracy with a mean Dice coefficient index of $0.947 \\\\pm 0.044$.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

肺叶的鉴别对疾病的诊断和治疗具有重要意义。少数肺部疾病在肺叶水平有区域性病变。因此,准确分割肺叶是必要的。在这项工作中,我们提出了一种利用协调引导的深度神经网络从胸部CT图像中自动分割肺叶的方法。我们首先采用自动肺分割方法从CT图像中提取肺区域,然后利用体积卷积神经网络(V-net)对肺叶进行分割。为了减少不同肺叶的误分类,我们采用坐标引导卷积层(coordinate -guided convolutional layer, CoordConvs)来生成肺叶位置信息的附加特征映射。所提出的模型在一些公开可用的数据集上进行了训练和评估,并达到了最先进的精度,平均Dice系数指数为0.947 \pm 0.044$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Segmentation Of Pulmonary Lobes Using Coordination-Guided Deep Neural Networks
The identification of pulmonary lobes is of great importance in disease diagnosis and treatment. A few lung diseases have regional disorders at lobar level. Thus, an accurate segmentation of pulmonary lobes is necessary. In this work, we propose an automated segmentation of pulmonary lobes using coordination-guided deep neural networks from chest CT images. We first employ an automated lung segmentation to extract the lung area from CT image, then exploit volumetric convolutional neural network (V-net) for segmenting the pulmonary lobes. To reduce the misclassification of different lobes, we therefore adopt coordination-guided convolutional layers (CoordConvs) that generate additional feature maps of the positional information of pulmonary lobes. The proposed model is trained and evaluated on a few publicly available datasets and has achieved the state-of-the-art accuracy with a mean Dice coefficient index of $0.947 \pm 0.044$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信