Hamood Al-Hajri, M. Al-Sawafi, Abdulaziz R. Al-Hashimi, Khalsa Al-Hadidi, Osama M. Al-Kindi, Mohammed Al-Amri, M. Al-Abri, S. Al-hinai
{"title":"通过优化聚合物注入,阿曼南部稠油油田成功降低了额外的碳强度和产油量","authors":"Hamood Al-Hajri, M. Al-Sawafi, Abdulaziz R. Al-Hashimi, Khalsa Al-Hadidi, Osama M. Al-Kindi, Mohammed Al-Amri, M. Al-Abri, S. Al-hinai","doi":"10.2118/214364-ms","DOIUrl":null,"url":null,"abstract":"\n Water and chemical EOR are the main secondary recovery mechanisms in many heavy oil fields in Oman. The development concept during EOR phase is through intense infill drilling with narrow well spacing. Field-M is currently under secondary recovery phase with both water and chemical EOR (Polymer) development. During this phase, water production increases significantly and all undesired water is being disposed through disposal wells. This increases carbon intensity as disposal process generates CO2 emissions with no additional benefit, which considered as uneconomical emissions.\n Due to increased amount of produced water during this phase, water handling capacity (including water disposal) was fully utilized to maximize oil production from this field. Creative solutions were certainly needed reduce uneconomical water disposal and increase oil gain. As per the field development, certain pre-defined polymer dosage need to be mixed with treated produced water to achieve a viscosity of around 15 cp to ensure effectiveness of chemical EOR. Field-M injection strategy was suggested to be under controlled fracture condition to maximize throughput. In controlled fracture injection environment, monitoring fracture propagation is very important as it can cause direct interference with producers leading to injection fluid short circuiting. Fracture propagation can be determined using pressure fall off test. In addition, water quality must be monitored regularly as it plays a major role in fracture propagation. Effective surveillance and sampling plan was generated and implemented to ensure to ensure effectiveness of the polymer injection and to capture any opportunities related to increasing injection within the field.\n The analytical work showed that fracture propagation is a function of injection pressure, injection rate, fluid properties (in this case produced water quality and polymer quality) and in-situ stresses. Most of this parameters are controls though effective surveillance, metering & sampling. However in-situ stress condition is dynamic as the reservoir pressure keeps changing based on dynamic changes in injection and offtake. Thus, fracture propagation was monitored carefully through periodic temperature surveys and pressure fall off test to identify opportunities to optimize injection in some of the injectors. The findings from these activities enabled increasing injection rate up to 30% in some of the injection patterns. This optimization provided additional sink for the produced water reducing water disposal and uneconomical CO2 emissions by at least 5%. This is considered this as the first step toward zero water disposal goal. In addition increasing injection in these patterns resulted in significant increase in oil gain associated with polymer injection peaking to maximum of 42% in some of the injector/producers patterns.\n The effective use of surveillance data was key enabler to achieve ultimate goal of increasing polymer injection and reduce carbon intensity within the field. This goal was achieved with significant gain of oil.","PeriodicalId":306106,"journal":{"name":"Day 4 Thu, June 08, 2023","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Successful Additional Carbon Intensity Reduction and Oil Gain through Polymer Injection Optimization in Heavy Oil Field in the South of Oman\",\"authors\":\"Hamood Al-Hajri, M. Al-Sawafi, Abdulaziz R. Al-Hashimi, Khalsa Al-Hadidi, Osama M. Al-Kindi, Mohammed Al-Amri, M. Al-Abri, S. Al-hinai\",\"doi\":\"10.2118/214364-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Water and chemical EOR are the main secondary recovery mechanisms in many heavy oil fields in Oman. The development concept during EOR phase is through intense infill drilling with narrow well spacing. Field-M is currently under secondary recovery phase with both water and chemical EOR (Polymer) development. During this phase, water production increases significantly and all undesired water is being disposed through disposal wells. This increases carbon intensity as disposal process generates CO2 emissions with no additional benefit, which considered as uneconomical emissions.\\n Due to increased amount of produced water during this phase, water handling capacity (including water disposal) was fully utilized to maximize oil production from this field. Creative solutions were certainly needed reduce uneconomical water disposal and increase oil gain. As per the field development, certain pre-defined polymer dosage need to be mixed with treated produced water to achieve a viscosity of around 15 cp to ensure effectiveness of chemical EOR. Field-M injection strategy was suggested to be under controlled fracture condition to maximize throughput. In controlled fracture injection environment, monitoring fracture propagation is very important as it can cause direct interference with producers leading to injection fluid short circuiting. Fracture propagation can be determined using pressure fall off test. In addition, water quality must be monitored regularly as it plays a major role in fracture propagation. Effective surveillance and sampling plan was generated and implemented to ensure to ensure effectiveness of the polymer injection and to capture any opportunities related to increasing injection within the field.\\n The analytical work showed that fracture propagation is a function of injection pressure, injection rate, fluid properties (in this case produced water quality and polymer quality) and in-situ stresses. Most of this parameters are controls though effective surveillance, metering & sampling. However in-situ stress condition is dynamic as the reservoir pressure keeps changing based on dynamic changes in injection and offtake. Thus, fracture propagation was monitored carefully through periodic temperature surveys and pressure fall off test to identify opportunities to optimize injection in some of the injectors. The findings from these activities enabled increasing injection rate up to 30% in some of the injection patterns. This optimization provided additional sink for the produced water reducing water disposal and uneconomical CO2 emissions by at least 5%. This is considered this as the first step toward zero water disposal goal. In addition increasing injection in these patterns resulted in significant increase in oil gain associated with polymer injection peaking to maximum of 42% in some of the injector/producers patterns.\\n The effective use of surveillance data was key enabler to achieve ultimate goal of increasing polymer injection and reduce carbon intensity within the field. This goal was achieved with significant gain of oil.\",\"PeriodicalId\":306106,\"journal\":{\"name\":\"Day 4 Thu, June 08, 2023\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, June 08, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/214364-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, June 08, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/214364-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Successful Additional Carbon Intensity Reduction and Oil Gain through Polymer Injection Optimization in Heavy Oil Field in the South of Oman
Water and chemical EOR are the main secondary recovery mechanisms in many heavy oil fields in Oman. The development concept during EOR phase is through intense infill drilling with narrow well spacing. Field-M is currently under secondary recovery phase with both water and chemical EOR (Polymer) development. During this phase, water production increases significantly and all undesired water is being disposed through disposal wells. This increases carbon intensity as disposal process generates CO2 emissions with no additional benefit, which considered as uneconomical emissions.
Due to increased amount of produced water during this phase, water handling capacity (including water disposal) was fully utilized to maximize oil production from this field. Creative solutions were certainly needed reduce uneconomical water disposal and increase oil gain. As per the field development, certain pre-defined polymer dosage need to be mixed with treated produced water to achieve a viscosity of around 15 cp to ensure effectiveness of chemical EOR. Field-M injection strategy was suggested to be under controlled fracture condition to maximize throughput. In controlled fracture injection environment, monitoring fracture propagation is very important as it can cause direct interference with producers leading to injection fluid short circuiting. Fracture propagation can be determined using pressure fall off test. In addition, water quality must be monitored regularly as it plays a major role in fracture propagation. Effective surveillance and sampling plan was generated and implemented to ensure to ensure effectiveness of the polymer injection and to capture any opportunities related to increasing injection within the field.
The analytical work showed that fracture propagation is a function of injection pressure, injection rate, fluid properties (in this case produced water quality and polymer quality) and in-situ stresses. Most of this parameters are controls though effective surveillance, metering & sampling. However in-situ stress condition is dynamic as the reservoir pressure keeps changing based on dynamic changes in injection and offtake. Thus, fracture propagation was monitored carefully through periodic temperature surveys and pressure fall off test to identify opportunities to optimize injection in some of the injectors. The findings from these activities enabled increasing injection rate up to 30% in some of the injection patterns. This optimization provided additional sink for the produced water reducing water disposal and uneconomical CO2 emissions by at least 5%. This is considered this as the first step toward zero water disposal goal. In addition increasing injection in these patterns resulted in significant increase in oil gain associated with polymer injection peaking to maximum of 42% in some of the injector/producers patterns.
The effective use of surveillance data was key enabler to achieve ultimate goal of increasing polymer injection and reduce carbon intensity within the field. This goal was achieved with significant gain of oil.