{"title":"基于深度信念网络知识获取的微调方法","authors":"Shin Kamada, T. Ichimura","doi":"10.1109/IWCIA.2016.7805759","DOIUrl":null,"url":null,"abstract":"We developed an adaptive structure learning method of Restricted Boltzmann Machine (RBM) which can generate/annihilate neurons by self-organizing learning method according to input patterns. Moreover, the adaptive Deep Belief Network (DBN) in the assemble process of pre-trained RBM layer was developed. The proposed method presents to score a great success to the training data set for big data benchmark test such as CIFAR-10. However, the classification capability of the test data set, which are included unknown patterns, is high, but does not lead perfect correct solution. We investigated the wrong specified data and then some characteristic patterns were found. In this paper, the knowledge related to the patterns is embedded into the classification algorithm of trained DBN. As a result, the classification capability can achieve a great success (97.1% to unknown data set).","PeriodicalId":262942,"journal":{"name":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fine tuning method by using knowledge acquisition from Deep Belief Network\",\"authors\":\"Shin Kamada, T. Ichimura\",\"doi\":\"10.1109/IWCIA.2016.7805759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed an adaptive structure learning method of Restricted Boltzmann Machine (RBM) which can generate/annihilate neurons by self-organizing learning method according to input patterns. Moreover, the adaptive Deep Belief Network (DBN) in the assemble process of pre-trained RBM layer was developed. The proposed method presents to score a great success to the training data set for big data benchmark test such as CIFAR-10. However, the classification capability of the test data set, which are included unknown patterns, is high, but does not lead perfect correct solution. We investigated the wrong specified data and then some characteristic patterns were found. In this paper, the knowledge related to the patterns is embedded into the classification algorithm of trained DBN. As a result, the classification capability can achieve a great success (97.1% to unknown data set).\",\"PeriodicalId\":262942,\"journal\":{\"name\":\"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA.2016.7805759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2016.7805759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fine tuning method by using knowledge acquisition from Deep Belief Network
We developed an adaptive structure learning method of Restricted Boltzmann Machine (RBM) which can generate/annihilate neurons by self-organizing learning method according to input patterns. Moreover, the adaptive Deep Belief Network (DBN) in the assemble process of pre-trained RBM layer was developed. The proposed method presents to score a great success to the training data set for big data benchmark test such as CIFAR-10. However, the classification capability of the test data set, which are included unknown patterns, is high, but does not lead perfect correct solution. We investigated the wrong specified data and then some characteristic patterns were found. In this paper, the knowledge related to the patterns is embedded into the classification algorithm of trained DBN. As a result, the classification capability can achieve a great success (97.1% to unknown data set).