基于深度信念网络知识获取的微调方法

Shin Kamada, T. Ichimura
{"title":"基于深度信念网络知识获取的微调方法","authors":"Shin Kamada, T. Ichimura","doi":"10.1109/IWCIA.2016.7805759","DOIUrl":null,"url":null,"abstract":"We developed an adaptive structure learning method of Restricted Boltzmann Machine (RBM) which can generate/annihilate neurons by self-organizing learning method according to input patterns. Moreover, the adaptive Deep Belief Network (DBN) in the assemble process of pre-trained RBM layer was developed. The proposed method presents to score a great success to the training data set for big data benchmark test such as CIFAR-10. However, the classification capability of the test data set, which are included unknown patterns, is high, but does not lead perfect correct solution. We investigated the wrong specified data and then some characteristic patterns were found. In this paper, the knowledge related to the patterns is embedded into the classification algorithm of trained DBN. As a result, the classification capability can achieve a great success (97.1% to unknown data set).","PeriodicalId":262942,"journal":{"name":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fine tuning method by using knowledge acquisition from Deep Belief Network\",\"authors\":\"Shin Kamada, T. Ichimura\",\"doi\":\"10.1109/IWCIA.2016.7805759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed an adaptive structure learning method of Restricted Boltzmann Machine (RBM) which can generate/annihilate neurons by self-organizing learning method according to input patterns. Moreover, the adaptive Deep Belief Network (DBN) in the assemble process of pre-trained RBM layer was developed. The proposed method presents to score a great success to the training data set for big data benchmark test such as CIFAR-10. However, the classification capability of the test data set, which are included unknown patterns, is high, but does not lead perfect correct solution. We investigated the wrong specified data and then some characteristic patterns were found. In this paper, the knowledge related to the patterns is embedded into the classification algorithm of trained DBN. As a result, the classification capability can achieve a great success (97.1% to unknown data set).\",\"PeriodicalId\":262942,\"journal\":{\"name\":\"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA.2016.7805759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2016.7805759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种约束玻尔兹曼机(RBM)的自适应结构学习方法,该方法可以根据输入模式通过自组织学习方法产生/消灭神经元。在此基础上,提出了预训练RBM层装配过程中的自适应深度信念网络(DBN)。该方法对CIFAR-10等大数据基准测试的训练数据集取得了很大的成功。然而,包含未知模式的测试数据集的分类能力很高,但并没有得到完美的正确解。我们调查了错误的指定数据,然后发现了一些特征模式。本文将与模式相关的知识嵌入到训练好的DBN分类算法中。因此,对未知数据集的分类能力取得了很大的成功(97.1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine tuning method by using knowledge acquisition from Deep Belief Network
We developed an adaptive structure learning method of Restricted Boltzmann Machine (RBM) which can generate/annihilate neurons by self-organizing learning method according to input patterns. Moreover, the adaptive Deep Belief Network (DBN) in the assemble process of pre-trained RBM layer was developed. The proposed method presents to score a great success to the training data set for big data benchmark test such as CIFAR-10. However, the classification capability of the test data set, which are included unknown patterns, is high, but does not lead perfect correct solution. We investigated the wrong specified data and then some characteristic patterns were found. In this paper, the knowledge related to the patterns is embedded into the classification algorithm of trained DBN. As a result, the classification capability can achieve a great success (97.1% to unknown data set).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信