{"title":"全体会议演讲2:90年代的计算机、微软和超级计算机","authors":"George Spix","doi":"10.1109/ICPADS.1994.589876","DOIUrl":null,"url":null,"abstract":"After 50 years of building high performance scientific computers, two major architectures exist: (1) clusters of “Cray-style” vector supercomputers; (2) clusters of scalar uniand multi-processors. Clusters are in transition from (a) massively parallel computers and clusters running proprietary software to (b) proprietary clusters running standard software, and (c) do-it-yourself Beowulf clusters built from commodity hardware and software. In 2001, only five years after its introduction, Beowulf has mobilized a community around a standard architecture and tools. Beowulf’s economics and sociology are poised to kill off the other architectural lines – and will likely affect traditional super-computer centers as well. Peer-to-peer and Grid communities are beginning to provide significant advantages for embarrassingly parallel problems and sharing vast numbers of files. The Computational Grid can federate systems into supercomputers far beyond the power of any current computing center. The centers will become super-data and super-application centers. While these trends make highperformance computing much less expensive and much more accessible, there is a dark side. Clusters perform poorly on applications that require large shared memory. Although there is vibrant computer architecture activity on microprocessors and on high-end cellular architectures, we appear to be entering an era of super-computing mono-culture. Investing in next generation software and hardware supercomputer architecture is essential to improve the efficiency and efficacy of systems.","PeriodicalId":154429,"journal":{"name":"Proceedings of 1994 International Conference on Parallel and Distributed Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plenary Address 2: Computing in the '90s, Microsoft, and Supercomputers\",\"authors\":\"George Spix\",\"doi\":\"10.1109/ICPADS.1994.589876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After 50 years of building high performance scientific computers, two major architectures exist: (1) clusters of “Cray-style” vector supercomputers; (2) clusters of scalar uniand multi-processors. Clusters are in transition from (a) massively parallel computers and clusters running proprietary software to (b) proprietary clusters running standard software, and (c) do-it-yourself Beowulf clusters built from commodity hardware and software. In 2001, only five years after its introduction, Beowulf has mobilized a community around a standard architecture and tools. Beowulf’s economics and sociology are poised to kill off the other architectural lines – and will likely affect traditional super-computer centers as well. Peer-to-peer and Grid communities are beginning to provide significant advantages for embarrassingly parallel problems and sharing vast numbers of files. The Computational Grid can federate systems into supercomputers far beyond the power of any current computing center. The centers will become super-data and super-application centers. While these trends make highperformance computing much less expensive and much more accessible, there is a dark side. Clusters perform poorly on applications that require large shared memory. Although there is vibrant computer architecture activity on microprocessors and on high-end cellular architectures, we appear to be entering an era of super-computing mono-culture. Investing in next generation software and hardware supercomputer architecture is essential to improve the efficiency and efficacy of systems.\",\"PeriodicalId\":154429,\"journal\":{\"name\":\"Proceedings of 1994 International Conference on Parallel and Distributed Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 International Conference on Parallel and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS.1994.589876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.1994.589876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plenary Address 2: Computing in the '90s, Microsoft, and Supercomputers
After 50 years of building high performance scientific computers, two major architectures exist: (1) clusters of “Cray-style” vector supercomputers; (2) clusters of scalar uniand multi-processors. Clusters are in transition from (a) massively parallel computers and clusters running proprietary software to (b) proprietary clusters running standard software, and (c) do-it-yourself Beowulf clusters built from commodity hardware and software. In 2001, only five years after its introduction, Beowulf has mobilized a community around a standard architecture and tools. Beowulf’s economics and sociology are poised to kill off the other architectural lines – and will likely affect traditional super-computer centers as well. Peer-to-peer and Grid communities are beginning to provide significant advantages for embarrassingly parallel problems and sharing vast numbers of files. The Computational Grid can federate systems into supercomputers far beyond the power of any current computing center. The centers will become super-data and super-application centers. While these trends make highperformance computing much less expensive and much more accessible, there is a dark side. Clusters perform poorly on applications that require large shared memory. Although there is vibrant computer architecture activity on microprocessors and on high-end cellular architectures, we appear to be entering an era of super-computing mono-culture. Investing in next generation software and hardware supercomputer architecture is essential to improve the efficiency and efficacy of systems.