基于局部优化的短时分数傅里叶变换特征提取用于说话人识别

Jinfang Wang, Hailong Du, Ming Guo, Xinli Nie, Shu-xin Luan, Chang Liu
{"title":"基于局部优化的短时分数傅里叶变换特征提取用于说话人识别","authors":"Jinfang Wang, Hailong Du, Ming Guo, Xinli Nie, Shu-xin Luan, Chang Liu","doi":"10.1109/ICIVPR.2017.7890873","DOIUrl":null,"url":null,"abstract":"This paper presents an improved locally optimized short-time fractional Fourier transform (STFRFT), HHT-based locally optimized STFRFT, by finding the optimal order using phase information ignoring the premise of the known chirp rate of signal and pre-estimated pitch of speech. The feature derived from the optimal order FRFT's magnitude spectrum, HHT-based locally optimized STFRFT Mel-frequency cepstral coefficients (HLO-STFRFT-MFCC), reveals the definite advantage in speaker recognition experiments on the TIMIT database. Furthermore, HLO-STFRFT-MFCC yields a gain of 13.0% relative to the baseline feature of Mel-frequency cepstral coefficients (MFCC) in the recognition accuracy on 2004 NIST SRE corpora.","PeriodicalId":126745,"journal":{"name":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Feature extraction using HHT-based locally optimized short-time fractional Fourier transform for speaker recognition\",\"authors\":\"Jinfang Wang, Hailong Du, Ming Guo, Xinli Nie, Shu-xin Luan, Chang Liu\",\"doi\":\"10.1109/ICIVPR.2017.7890873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved locally optimized short-time fractional Fourier transform (STFRFT), HHT-based locally optimized STFRFT, by finding the optimal order using phase information ignoring the premise of the known chirp rate of signal and pre-estimated pitch of speech. The feature derived from the optimal order FRFT's magnitude spectrum, HHT-based locally optimized STFRFT Mel-frequency cepstral coefficients (HLO-STFRFT-MFCC), reveals the definite advantage in speaker recognition experiments on the TIMIT database. Furthermore, HLO-STFRFT-MFCC yields a gain of 13.0% relative to the baseline feature of Mel-frequency cepstral coefficients (MFCC) in the recognition accuracy on 2004 NIST SRE corpora.\",\"PeriodicalId\":126745,\"journal\":{\"name\":\"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVPR.2017.7890873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVPR.2017.7890873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种改进的局部优化短时分数傅里叶变换(STFRFT),即基于hht的局部优化STFRFT,在忽略已知信号啁啾率和预估语音音高的前提下,利用相位信息寻找最优阶数。基于hht的局部优化STFRFT Mel-frequency倒谱系数(HLO-STFRFT-MFCC)特征在基于TIMIT数据库的说话人识别实验中显示出明显的优势。此外,HLO-STFRFT-MFCC在2004年NIST SRE语料库上的识别精度相对于mel频率倒谱系数(MFCC)的基线特征增加了13.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature extraction using HHT-based locally optimized short-time fractional Fourier transform for speaker recognition
This paper presents an improved locally optimized short-time fractional Fourier transform (STFRFT), HHT-based locally optimized STFRFT, by finding the optimal order using phase information ignoring the premise of the known chirp rate of signal and pre-estimated pitch of speech. The feature derived from the optimal order FRFT's magnitude spectrum, HHT-based locally optimized STFRFT Mel-frequency cepstral coefficients (HLO-STFRFT-MFCC), reveals the definite advantage in speaker recognition experiments on the TIMIT database. Furthermore, HLO-STFRFT-MFCC yields a gain of 13.0% relative to the baseline feature of Mel-frequency cepstral coefficients (MFCC) in the recognition accuracy on 2004 NIST SRE corpora.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信