面向情感分析的新型凸多面体分类器

Soufiane El Mrabti, M. Lazaar, Mohammed Al Achhab, Hicham Omara
{"title":"面向情感分析的新型凸多面体分类器","authors":"Soufiane El Mrabti, M. Lazaar, Mohammed Al Achhab, Hicham Omara","doi":"10.1109/CloudTech49835.2020.9365906","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Novel Convex Polyhedron classifier (NCPC) based on the geometric concept convex hull. NCPC is basically a linear piecewise classifier (LPC). It partitions linearly non-separable data into various linearly separable subsets. For each of these subset of data, a linear hyperplane is used to classify them. We evaluate the performance of this classifier by combining it with two feature selection methods (Chi- squared and Anova F-value). Using two datasets, the results indicate that our proposed classifier outperforms other LPC- based classifiers.","PeriodicalId":272860,"journal":{"name":"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Convex Polyhedron Classifier for Sentiment Analysis\",\"authors\":\"Soufiane El Mrabti, M. Lazaar, Mohammed Al Achhab, Hicham Omara\",\"doi\":\"10.1109/CloudTech49835.2020.9365906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a Novel Convex Polyhedron classifier (NCPC) based on the geometric concept convex hull. NCPC is basically a linear piecewise classifier (LPC). It partitions linearly non-separable data into various linearly separable subsets. For each of these subset of data, a linear hyperplane is used to classify them. We evaluate the performance of this classifier by combining it with two feature selection methods (Chi- squared and Anova F-value). Using two datasets, the results indicate that our proposed classifier outperforms other LPC- based classifiers.\",\"PeriodicalId\":272860,\"journal\":{\"name\":\"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudTech49835.2020.9365906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudTech49835.2020.9365906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于凸壳几何概念的凸多面体分类器(NCPC)。NCPC基本上是线性分段分类器(LPC)。它将线性不可分的数据划分为各种线性可分的子集。对于每一个数据子集,使用一个线性超平面对它们进行分类。我们通过将该分类器与两种特征选择方法(卡方和方差f值)相结合来评估该分类器的性能。使用两个数据集,结果表明我们提出的分类器优于其他基于LPC的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Convex Polyhedron Classifier for Sentiment Analysis
In this paper, we propose a Novel Convex Polyhedron classifier (NCPC) based on the geometric concept convex hull. NCPC is basically a linear piecewise classifier (LPC). It partitions linearly non-separable data into various linearly separable subsets. For each of these subset of data, a linear hyperplane is used to classify them. We evaluate the performance of this classifier by combining it with two feature selection methods (Chi- squared and Anova F-value). Using two datasets, the results indicate that our proposed classifier outperforms other LPC- based classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信