发展中国家持续定期停电的需求侧预测方法

Takuma Kogo, Shin Nakamura, S. Pravinraj, B. Arumugam
{"title":"发展中国家持续定期停电的需求侧预测方法","authors":"Takuma Kogo, Shin Nakamura, S. Pravinraj, B. Arumugam","doi":"10.1109/ISGTEUROPE.2014.7028935","DOIUrl":null,"url":null,"abstract":"Irregularity of scheduled power-cut induces consumer's inefficient activity and therefore the consumer expects to know power-cut occurrence in advance. This paper proposes 3-heuristics which enable consumers to predict starttime of power-cuts for next day: SBP (Start-time of power-cut Based Prediction) using historical power-cut start-time data, FBP (Frequency Based Prediction) using historical frequency fluctuation data and ADSP (Adaptive Data Selection Prediction) which is a hybrid exploiting advantages of SBP/FBP with appropriate data period for overcoming changes of power-cut pattern. The evaluation results with power data of Chennai India showed that SBP totally achieved higher prediction success ratio than FBP and SBP has the advantage on regular power-cut pattern instead FBP has the same on the irregulars. Data period to maximize prediction success ratio depends on power-cut pattern as for SBP/FBP. The highest prediction success ratio was marked by ADSP which adaptively combined start-time/frequency data and determined data period on the basis of power-cuts pattern.","PeriodicalId":299515,"journal":{"name":"IEEE PES Innovative Smart Grid Technologies, Europe","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A demand side prediction method for persistent scheduled power-cuts in developing countries\",\"authors\":\"Takuma Kogo, Shin Nakamura, S. Pravinraj, B. Arumugam\",\"doi\":\"10.1109/ISGTEUROPE.2014.7028935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Irregularity of scheduled power-cut induces consumer's inefficient activity and therefore the consumer expects to know power-cut occurrence in advance. This paper proposes 3-heuristics which enable consumers to predict starttime of power-cuts for next day: SBP (Start-time of power-cut Based Prediction) using historical power-cut start-time data, FBP (Frequency Based Prediction) using historical frequency fluctuation data and ADSP (Adaptive Data Selection Prediction) which is a hybrid exploiting advantages of SBP/FBP with appropriate data period for overcoming changes of power-cut pattern. The evaluation results with power data of Chennai India showed that SBP totally achieved higher prediction success ratio than FBP and SBP has the advantage on regular power-cut pattern instead FBP has the same on the irregulars. Data period to maximize prediction success ratio depends on power-cut pattern as for SBP/FBP. The highest prediction success ratio was marked by ADSP which adaptively combined start-time/frequency data and determined data period on the basis of power-cuts pattern.\",\"PeriodicalId\":299515,\"journal\":{\"name\":\"IEEE PES Innovative Smart Grid Technologies, Europe\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE PES Innovative Smart Grid Technologies, Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEUROPE.2014.7028935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES Innovative Smart Grid Technologies, Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEUROPE.2014.7028935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

计划停电的不规律导致消费者的低效活动,因此消费者期望提前知道停电的发生。本文提出了3种启发式方法,使消费者能够预测第二天的断电开始时间:利用历史断电开始时间数据的断电开始时间预测(SBP),利用历史频率波动数据的基于频率的预测(FBP)和ADSP(自适应数据选择预测),它是利用SBP/FBP的优点,通过适当的数据周期来克服断电模式的变化。利用印度钦奈的电力数据评价结果表明,SBP的预测成功率总体高于FBP,并且SBP在规则停电模式上具有优势,而FBP在不规则停电模式上具有优势。最大预测成功率的数据周期取决于断电模式,如SBP/FBP。预测成功率最高的是基于断电模式自适应组合启动时间/频率数据和确定数据周期的ADSP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A demand side prediction method for persistent scheduled power-cuts in developing countries
Irregularity of scheduled power-cut induces consumer's inefficient activity and therefore the consumer expects to know power-cut occurrence in advance. This paper proposes 3-heuristics which enable consumers to predict starttime of power-cuts for next day: SBP (Start-time of power-cut Based Prediction) using historical power-cut start-time data, FBP (Frequency Based Prediction) using historical frequency fluctuation data and ADSP (Adaptive Data Selection Prediction) which is a hybrid exploiting advantages of SBP/FBP with appropriate data period for overcoming changes of power-cut pattern. The evaluation results with power data of Chennai India showed that SBP totally achieved higher prediction success ratio than FBP and SBP has the advantage on regular power-cut pattern instead FBP has the same on the irregulars. Data period to maximize prediction success ratio depends on power-cut pattern as for SBP/FBP. The highest prediction success ratio was marked by ADSP which adaptively combined start-time/frequency data and determined data period on the basis of power-cuts pattern.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信