{"title":"基于IEEE 802.11ba的高能效无线Mesh网络:一种新架构","authors":"R. Vital, Carles Gomez, E. G. Villegas","doi":"10.1109/ISCC58397.2023.10218013","DOIUrl":null,"url":null,"abstract":"In traditional IoT applications, energy saving is crucial, whereas the demand for high bandwidth is not frequent. Nonetheless, a new generation of IoT applications show a wider and varying range of requirements, where bandwidth or delay become key performance indicators to consider, which can be satisfied by technologies like Wi-Fi. However, Wi-Fi does not provide a long link range, and it exhibits a high energy consumption. To solve these issues, we propose a Wi-Fi mesh architecture where devices are equipped with a secondary, Wake-up Radio (WuR) interface, based on the new IEEE 802.11ba amendment. A WuR allows the main radio to remain in a power-saving state for long periods. Simulation results demonstrate that this architecture drastically reduces energy consumption, while keeping delay figures similar to those of traditional, single-interface approaches. To our best knowledge, this work pioneers the exploration of WuR's practicality in optimizing energy consumption in Wi-Fi-based mesh networks.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-efficient Wireless Mesh Networks with IEEE 802.11ba: A New Architecture\",\"authors\":\"R. Vital, Carles Gomez, E. G. Villegas\",\"doi\":\"10.1109/ISCC58397.2023.10218013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In traditional IoT applications, energy saving is crucial, whereas the demand for high bandwidth is not frequent. Nonetheless, a new generation of IoT applications show a wider and varying range of requirements, where bandwidth or delay become key performance indicators to consider, which can be satisfied by technologies like Wi-Fi. However, Wi-Fi does not provide a long link range, and it exhibits a high energy consumption. To solve these issues, we propose a Wi-Fi mesh architecture where devices are equipped with a secondary, Wake-up Radio (WuR) interface, based on the new IEEE 802.11ba amendment. A WuR allows the main radio to remain in a power-saving state for long periods. Simulation results demonstrate that this architecture drastically reduces energy consumption, while keeping delay figures similar to those of traditional, single-interface approaches. To our best knowledge, this work pioneers the exploration of WuR's practicality in optimizing energy consumption in Wi-Fi-based mesh networks.\",\"PeriodicalId\":265337,\"journal\":{\"name\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC58397.2023.10218013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-efficient Wireless Mesh Networks with IEEE 802.11ba: A New Architecture
In traditional IoT applications, energy saving is crucial, whereas the demand for high bandwidth is not frequent. Nonetheless, a new generation of IoT applications show a wider and varying range of requirements, where bandwidth or delay become key performance indicators to consider, which can be satisfied by technologies like Wi-Fi. However, Wi-Fi does not provide a long link range, and it exhibits a high energy consumption. To solve these issues, we propose a Wi-Fi mesh architecture where devices are equipped with a secondary, Wake-up Radio (WuR) interface, based on the new IEEE 802.11ba amendment. A WuR allows the main radio to remain in a power-saving state for long periods. Simulation results demonstrate that this architecture drastically reduces energy consumption, while keeping delay figures similar to those of traditional, single-interface approaches. To our best knowledge, this work pioneers the exploration of WuR's practicality in optimizing energy consumption in Wi-Fi-based mesh networks.