生物驱动,精确和简单的校准和重建使用立体光学显微镜

Lars Eckert, R. Grigat
{"title":"生物驱动,精确和简单的校准和重建使用立体光学显微镜","authors":"Lars Eckert, R. Grigat","doi":"10.1109/ICCV.2001.937609","DOIUrl":null,"url":null,"abstract":"Stereoscopic calibration and reconstruction is applied to the specialized optics of a binocular monobjective stereo light microscope. Such a microscope exhibits a special kind of image distortion. Despite the difficulty of modelling the microscope, a simple calibration method as well as a fast and simple, yet precise, reconstruction algorithm is developed. Their fundamental scheme is based upon biological binocular vision. The reconstruction uses polynomial approximations up to a degree of 2 and thus has a very low computational complexity. The polynomial coefficients are identified during calibration and their number is minimal by construction. No lens data is required. Both the calibration and reconstruction algorithm are robust against a rigid motion of the microscope. Their power is proven with real data using an off-the-shelf PC.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Biologically motivated, precise and simple calibration and reconstruction using a stereo light microscope\",\"authors\":\"Lars Eckert, R. Grigat\",\"doi\":\"10.1109/ICCV.2001.937609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stereoscopic calibration and reconstruction is applied to the specialized optics of a binocular monobjective stereo light microscope. Such a microscope exhibits a special kind of image distortion. Despite the difficulty of modelling the microscope, a simple calibration method as well as a fast and simple, yet precise, reconstruction algorithm is developed. Their fundamental scheme is based upon biological binocular vision. The reconstruction uses polynomial approximations up to a degree of 2 and thus has a very low computational complexity. The polynomial coefficients are identified during calibration and their number is minimal by construction. No lens data is required. Both the calibration and reconstruction algorithm are robust against a rigid motion of the microscope. Their power is proven with real data using an off-the-shelf PC.\",\"PeriodicalId\":429441,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2001.937609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

对双目单物镜立体光学显微镜的专用光学系统进行了立体标定与重建。这种显微镜表现出一种特殊的图像畸变。尽管显微镜建模困难,但开发了一种简单的校准方法以及一种快速、简单而精确的重建算法。他们的基本方案是基于生物双目视觉。重建使用多项式近似达到2度,因此具有非常低的计算复杂度。多项式系数在标定过程中被识别,并且它们的数目通过构造是最小的。不需要镜头数据。校正和重建算法对显微镜的刚性运动都具有鲁棒性。他们的能力是通过使用现成的PC机的真实数据证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biologically motivated, precise and simple calibration and reconstruction using a stereo light microscope
Stereoscopic calibration and reconstruction is applied to the specialized optics of a binocular monobjective stereo light microscope. Such a microscope exhibits a special kind of image distortion. Despite the difficulty of modelling the microscope, a simple calibration method as well as a fast and simple, yet precise, reconstruction algorithm is developed. Their fundamental scheme is based upon biological binocular vision. The reconstruction uses polynomial approximations up to a degree of 2 and thus has a very low computational complexity. The polynomial coefficients are identified during calibration and their number is minimal by construction. No lens data is required. Both the calibration and reconstruction algorithm are robust against a rigid motion of the microscope. Their power is proven with real data using an off-the-shelf PC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信