Mattia Bosio, Pau Bellot, P. Salembier, Albert Oliveras-Vergés
{"title":"基于微阵列分类的分层聚类特征集增强","authors":"Mattia Bosio, Pau Bellot, P. Salembier, Albert Oliveras-Vergés","doi":"10.1109/GENSiPS.2011.6169486","DOIUrl":null,"url":null,"abstract":"A new method for gene expression classification is proposed in this paper. In a first step, the original feature set is enriched by including new features, called metagenes, produced via hierarchical clustering. In a second step, a reliable classifier is built from a wrapper feature selection process. The selection relies on two criteria: the classical classification error rate and a new reliability measure. As a result, a classifier with good predictive ability using as few features as possible to reduce the risk of overfitting is obtained. This method has been tested on three public cancer datasets: leukemia, lymphoma and colon. The proposed method has obtained interesting classification results and the experiments have confirmed the utility of both metagenes and feature ranking criterion to improve the final classifier.","PeriodicalId":181666,"journal":{"name":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Feature set enhancement via hierarchical clustering for microarray classification\",\"authors\":\"Mattia Bosio, Pau Bellot, P. Salembier, Albert Oliveras-Vergés\",\"doi\":\"10.1109/GENSiPS.2011.6169486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for gene expression classification is proposed in this paper. In a first step, the original feature set is enriched by including new features, called metagenes, produced via hierarchical clustering. In a second step, a reliable classifier is built from a wrapper feature selection process. The selection relies on two criteria: the classical classification error rate and a new reliability measure. As a result, a classifier with good predictive ability using as few features as possible to reduce the risk of overfitting is obtained. This method has been tested on three public cancer datasets: leukemia, lymphoma and colon. The proposed method has obtained interesting classification results and the experiments have confirmed the utility of both metagenes and feature ranking criterion to improve the final classifier.\",\"PeriodicalId\":181666,\"journal\":{\"name\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GENSiPS.2011.6169486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSiPS.2011.6169486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature set enhancement via hierarchical clustering for microarray classification
A new method for gene expression classification is proposed in this paper. In a first step, the original feature set is enriched by including new features, called metagenes, produced via hierarchical clustering. In a second step, a reliable classifier is built from a wrapper feature selection process. The selection relies on two criteria: the classical classification error rate and a new reliability measure. As a result, a classifier with good predictive ability using as few features as possible to reduce the risk of overfitting is obtained. This method has been tested on three public cancer datasets: leukemia, lymphoma and colon. The proposed method has obtained interesting classification results and the experiments have confirmed the utility of both metagenes and feature ranking criterion to improve the final classifier.