Maven的可伸缩调用图构造函数

Mehdi Keshani
{"title":"Maven的可伸缩调用图构造函数","authors":"Mehdi Keshani","doi":"10.1109/ICSE-Companion52605.2021.00046","DOIUrl":null,"url":null,"abstract":"As a rich source of data, Call Graphs are used for various applications including security vulnerability detection. Despite multiple studies showing that Call Graphs can drastically improve the accuracy of analysis, existing ecosystem-scale tools like Dependabot do not use Call Graphs and work at the package-level. Using Call Graphs in ecosystem use cases is not practical because of the scalability problems that Call Graph generators have. Call Graph generation is usually considered to be a \"full program analysis\" resulting in large Call Graphs and expensive computation. To make an analysis applicable to ecosystem scale, this pragmatic approach does not work, because the number of possible combinations of how a particular artifact can be combined in a full program explodes. Therefore, it is necessary to make the analysis incremental. There are existing studies on different types of incremental program analysis. However, none of them focuses on Call Graph generation for an entire ecosystem. In this paper, we propose an incremental implementation of the CHA algorithm that can generate Call Graphs on-demand, by stitching together partial Call Graphs that have been extracted for libraries before. Our preliminary evaluation results show that the proposed approach scales well and outperforms the most scalable existing framework called OPAL.","PeriodicalId":136929,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scalable Call Graph Constructor for Maven\",\"authors\":\"Mehdi Keshani\",\"doi\":\"10.1109/ICSE-Companion52605.2021.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a rich source of data, Call Graphs are used for various applications including security vulnerability detection. Despite multiple studies showing that Call Graphs can drastically improve the accuracy of analysis, existing ecosystem-scale tools like Dependabot do not use Call Graphs and work at the package-level. Using Call Graphs in ecosystem use cases is not practical because of the scalability problems that Call Graph generators have. Call Graph generation is usually considered to be a \\\"full program analysis\\\" resulting in large Call Graphs and expensive computation. To make an analysis applicable to ecosystem scale, this pragmatic approach does not work, because the number of possible combinations of how a particular artifact can be combined in a full program explodes. Therefore, it is necessary to make the analysis incremental. There are existing studies on different types of incremental program analysis. However, none of them focuses on Call Graph generation for an entire ecosystem. In this paper, we propose an incremental implementation of the CHA algorithm that can generate Call Graphs on-demand, by stitching together partial Call Graphs that have been extracted for libraries before. Our preliminary evaluation results show that the proposed approach scales well and outperforms the most scalable existing framework called OPAL.\",\"PeriodicalId\":136929,\"journal\":{\"name\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE-Companion52605.2021.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-Companion52605.2021.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作为丰富的数据源,调用图可用于各种应用程序,包括安全漏洞检测。尽管多项研究表明调用图可以极大地提高分析的准确性,但现有的生态系统规模的工具(如Dependabot)不使用调用图,而是在包级别上工作。在生态系统用例中使用调用图是不实际的,因为调用图生成器具有可伸缩性问题。调用图的生成通常被认为是一个“完整的程序分析”,导致大量的调用图和昂贵的计算。为了使分析适用于生态系统规模,这种实用的方法不起作用,因为在一个完整的程序中如何组合一个特定工件的可能组合的数量会爆炸。因此,有必要进行增量分析。已有关于不同类型增量程序分析的研究。然而,它们都没有关注整个生态系统的调用图生成。在本文中,我们提出了CHA算法的增量实现,该算法可以通过将之前为库提取的部分调用图拼接在一起,按需生成调用图。我们的初步评估结果表明,所提出的方法具有良好的可扩展性,并且优于称为OPAL的最具可扩展性的现有框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Call Graph Constructor for Maven
As a rich source of data, Call Graphs are used for various applications including security vulnerability detection. Despite multiple studies showing that Call Graphs can drastically improve the accuracy of analysis, existing ecosystem-scale tools like Dependabot do not use Call Graphs and work at the package-level. Using Call Graphs in ecosystem use cases is not practical because of the scalability problems that Call Graph generators have. Call Graph generation is usually considered to be a "full program analysis" resulting in large Call Graphs and expensive computation. To make an analysis applicable to ecosystem scale, this pragmatic approach does not work, because the number of possible combinations of how a particular artifact can be combined in a full program explodes. Therefore, it is necessary to make the analysis incremental. There are existing studies on different types of incremental program analysis. However, none of them focuses on Call Graph generation for an entire ecosystem. In this paper, we propose an incremental implementation of the CHA algorithm that can generate Call Graphs on-demand, by stitching together partial Call Graphs that have been extracted for libraries before. Our preliminary evaluation results show that the proposed approach scales well and outperforms the most scalable existing framework called OPAL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信