从非平稳时间序列中提取驱动信号

M. I. Széliga, P. F. Verdes, P. Granitto, H. Ceccatto
{"title":"从非平稳时间序列中提取驱动信号","authors":"M. I. Széliga, P. F. Verdes, P. Granitto, H. Ceccatto","doi":"10.1109/SBRN.2002.1181443","DOIUrl":null,"url":null,"abstract":"We propose a simple method for the reconstruction of slow dynamics perturbations from non-stationary time series records. The method traces the evolution of the perturbing signal by simultaneously learning the intrinsic stationary dynamics and the time dependency of the changing parameter. For this purpose, an extra input unit is added to a feedforward artificial neural network and a suitable error function minimized in the training process. Testing of our algorithm on synthetic data shows its efficacy and allows extracting general criteria for applications on real-world problems. Finally, a preliminary study of the well-known sunspot time series recovers particular features of this series, including recently reported changes in solar activity during last century.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extracting driving signals from non-stationary time series\",\"authors\":\"M. I. Széliga, P. F. Verdes, P. Granitto, H. Ceccatto\",\"doi\":\"10.1109/SBRN.2002.1181443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a simple method for the reconstruction of slow dynamics perturbations from non-stationary time series records. The method traces the evolution of the perturbing signal by simultaneously learning the intrinsic stationary dynamics and the time dependency of the changing parameter. For this purpose, an extra input unit is added to a feedforward artificial neural network and a suitable error function minimized in the training process. Testing of our algorithm on synthetic data shows its efficacy and allows extracting general criteria for applications on real-world problems. Finally, a preliminary study of the well-known sunspot time series recovers particular features of this series, including recently reported changes in solar activity during last century.\",\"PeriodicalId\":157186,\"journal\":{\"name\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2002.1181443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种从非平稳时间序列记录中重建慢动力学摄动的简单方法。该方法通过同时学习固有平稳动力学和变化参数的时间依赖性来跟踪摄动信号的演化。为此,在前馈人工神经网络中增加一个额外的输入单元,并在训练过程中最小化合适的误差函数。我们的算法在合成数据上的测试表明了它的有效性,并允许为现实世界问题的应用程序提取一般标准。最后,对众所周知的太阳黑子时间序列的初步研究恢复了该序列的特定特征,包括最近报道的上个世纪太阳活动的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting driving signals from non-stationary time series
We propose a simple method for the reconstruction of slow dynamics perturbations from non-stationary time series records. The method traces the evolution of the perturbing signal by simultaneously learning the intrinsic stationary dynamics and the time dependency of the changing parameter. For this purpose, an extra input unit is added to a feedforward artificial neural network and a suitable error function minimized in the training process. Testing of our algorithm on synthetic data shows its efficacy and allows extracting general criteria for applications on real-world problems. Finally, a preliminary study of the well-known sunspot time series recovers particular features of this series, including recently reported changes in solar activity during last century.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信