卷积神经网络在MRI中识别颈动脉斑块组成

Yuxi Dong, Yuchao Pan, Xihai Zhao, Rui Li, C. Yuan, W. Xu
{"title":"卷积神经网络在MRI中识别颈动脉斑块组成","authors":"Yuxi Dong, Yuchao Pan, Xihai Zhao, Rui Li, C. Yuan, W. Xu","doi":"10.1109/SMARTCOMP.2017.7947015","DOIUrl":null,"url":null,"abstract":"Carotid plaques may cause strokes. The composition of the plaque helps assessing the risk. Magnetic resonance imaging (MRI) is a powerful technology for analyzing the composition. It is both tedious and error-prone for a human radiologist to review such images. Traditional computer-aided diagnosis tools use manually crafted features that lack both generality and accuracy. We propose a novel approach using Deep convolutional neural networks (CNN) to classify these plaque tissues. In order to accommodate the multi-contrast MRI images, we modify stateof-the-art CNN models to support different number of input channels, and also adapt the models to do pixel- wise predictions. On a dataset with 1,098 human subjects, we show that we achieve significantly better accuracy than previous models. Our result also indicates interesting relations between contrast weightings and tissue types","PeriodicalId":193593,"journal":{"name":"2017 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Identifying Carotid Plaque Composition in MRI with Convolutional Neural Networks\",\"authors\":\"Yuxi Dong, Yuchao Pan, Xihai Zhao, Rui Li, C. Yuan, W. Xu\",\"doi\":\"10.1109/SMARTCOMP.2017.7947015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carotid plaques may cause strokes. The composition of the plaque helps assessing the risk. Magnetic resonance imaging (MRI) is a powerful technology for analyzing the composition. It is both tedious and error-prone for a human radiologist to review such images. Traditional computer-aided diagnosis tools use manually crafted features that lack both generality and accuracy. We propose a novel approach using Deep convolutional neural networks (CNN) to classify these plaque tissues. In order to accommodate the multi-contrast MRI images, we modify stateof-the-art CNN models to support different number of input channels, and also adapt the models to do pixel- wise predictions. On a dataset with 1,098 human subjects, we show that we achieve significantly better accuracy than previous models. Our result also indicates interesting relations between contrast weightings and tissue types\",\"PeriodicalId\":193593,\"journal\":{\"name\":\"2017 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP.2017.7947015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2017.7947015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

颈动脉斑块可能导致中风。斑块的组成有助于评估风险。磁共振成像(MRI)是一种分析成分的强大技术。对于人类放射科医生来说,检查这些图像既乏味又容易出错。传统的计算机辅助诊断工具使用人工制作的特征,缺乏通用性和准确性。我们提出了一种使用深度卷积神经网络(CNN)对这些斑块组织进行分类的新方法。为了适应多对比度MRI图像,我们修改了最先进的CNN模型,以支持不同数量的输入通道,并调整模型以进行像素预测。在一个有1098个人类受试者的数据集上,我们表明我们比以前的模型取得了明显更好的准确性。我们的结果还表明对比权重和组织类型之间的有趣关系
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Carotid Plaque Composition in MRI with Convolutional Neural Networks
Carotid plaques may cause strokes. The composition of the plaque helps assessing the risk. Magnetic resonance imaging (MRI) is a powerful technology for analyzing the composition. It is both tedious and error-prone for a human radiologist to review such images. Traditional computer-aided diagnosis tools use manually crafted features that lack both generality and accuracy. We propose a novel approach using Deep convolutional neural networks (CNN) to classify these plaque tissues. In order to accommodate the multi-contrast MRI images, we modify stateof-the-art CNN models to support different number of input channels, and also adapt the models to do pixel- wise predictions. On a dataset with 1,098 human subjects, we show that we achieve significantly better accuracy than previous models. Our result also indicates interesting relations between contrast weightings and tissue types
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信