Zhao Chen, Guangchen Chen, F. Zhou, Bin Yang, Lili Wang, Qiong Liu, Yonghang Chen
{"title":"一种新的用于遥感图像分类与回归的通用半监督深度学习框架","authors":"Zhao Chen, Guangchen Chen, F. Zhou, Bin Yang, Lili Wang, Qiong Liu, Yonghang Chen","doi":"10.1109/IGARSS39084.2020.9323932","DOIUrl":null,"url":null,"abstract":"Remote sensing image analysis often involves image-level classification and/ or regression. One major problem with remote sensing data is that it is difficult to obtain abundant precise manual annotations to train fully supervised deep networks that have achieved great success in computer vision. Therefore, this paper proposes a novel general semisupervised framework (GSF) which only requires a small amount of annotated samples for training. It employs a new hybrid (dis) similarity to characterize different aspects of the images and realizes label propagation while fine- tuning a deep neural network (NN). As shown by the experimental results, GSF outperforms several supervised baselines and state-of-the-art semisupervised models in classification and regression.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel General Semisupervised Deep Learning Framework for Classification and Regression with Remote Sensing Images\",\"authors\":\"Zhao Chen, Guangchen Chen, F. Zhou, Bin Yang, Lili Wang, Qiong Liu, Yonghang Chen\",\"doi\":\"10.1109/IGARSS39084.2020.9323932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote sensing image analysis often involves image-level classification and/ or regression. One major problem with remote sensing data is that it is difficult to obtain abundant precise manual annotations to train fully supervised deep networks that have achieved great success in computer vision. Therefore, this paper proposes a novel general semisupervised framework (GSF) which only requires a small amount of annotated samples for training. It employs a new hybrid (dis) similarity to characterize different aspects of the images and realizes label propagation while fine- tuning a deep neural network (NN). As shown by the experimental results, GSF outperforms several supervised baselines and state-of-the-art semisupervised models in classification and regression.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9323932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel General Semisupervised Deep Learning Framework for Classification and Regression with Remote Sensing Images
Remote sensing image analysis often involves image-level classification and/ or regression. One major problem with remote sensing data is that it is difficult to obtain abundant precise manual annotations to train fully supervised deep networks that have achieved great success in computer vision. Therefore, this paper proposes a novel general semisupervised framework (GSF) which only requires a small amount of annotated samples for training. It employs a new hybrid (dis) similarity to characterize different aspects of the images and realizes label propagation while fine- tuning a deep neural network (NN). As shown by the experimental results, GSF outperforms several supervised baselines and state-of-the-art semisupervised models in classification and regression.