{"title":"从小说全文中提取有用信息","authors":"Sharon Givon, Maria Milosavljevic","doi":"10.5555/1931390.1931450","DOIUrl":null,"url":null,"abstract":"In this paper, we describe some experiments in large-scale Information Extraction (IE) focusing on book texts. We investigate the scalability of IE techniques to full-sized books, and the utility of IE techniques in extracting useful information from fiction. In particular, we evaluate a variety of Named Entity Recognition (NER) techniques in identifying the central characters in works of fiction. First, we describe the creation of a gold standard for evaluation, which contains ordered lists of characters for a corpus of classic book texts in Project Gutenberg. Second, we describe several approaches to the task of character identification, where our best model achieves an average coverage score of 78.4% across all central characters. Finally, we propose a number of approaches for future work.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracting Useful Information from the Full Text of Fiction\",\"authors\":\"Sharon Givon, Maria Milosavljevic\",\"doi\":\"10.5555/1931390.1931450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe some experiments in large-scale Information Extraction (IE) focusing on book texts. We investigate the scalability of IE techniques to full-sized books, and the utility of IE techniques in extracting useful information from fiction. In particular, we evaluate a variety of Named Entity Recognition (NER) techniques in identifying the central characters in works of fiction. First, we describe the creation of a gold standard for evaluation, which contains ordered lists of characters for a corpus of classic book texts in Project Gutenberg. Second, we describe several approaches to the task of character identification, where our best model achieves an average coverage score of 78.4% across all central characters. Finally, we propose a number of approaches for future work.\",\"PeriodicalId\":120472,\"journal\":{\"name\":\"RIAO Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RIAO Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/1931390.1931450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1931390.1931450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extracting Useful Information from the Full Text of Fiction
In this paper, we describe some experiments in large-scale Information Extraction (IE) focusing on book texts. We investigate the scalability of IE techniques to full-sized books, and the utility of IE techniques in extracting useful information from fiction. In particular, we evaluate a variety of Named Entity Recognition (NER) techniques in identifying the central characters in works of fiction. First, we describe the creation of a gold standard for evaluation, which contains ordered lists of characters for a corpus of classic book texts in Project Gutenberg. Second, we describe several approaches to the task of character identification, where our best model achieves an average coverage score of 78.4% across all central characters. Finally, we propose a number of approaches for future work.