fMRI序列的无监督模糊聚类分析

M. Fadili, S. Ruan, D. Bloyet, B. Mazoyer
{"title":"fMRI序列的无监督模糊聚类分析","authors":"M. Fadili, S. Ruan, D. Bloyet, B. Mazoyer","doi":"10.1109/IEMBS.1998.745515","DOIUrl":null,"url":null,"abstract":"The potential of an fMRI data analysis strategy using a paradigm independent unsupervised fuzzy clustering is presented. The power of the method is demonstrated to discriminate different types of responses without prior knowledge relative to the paradigm in contrast with classic statistical methods which require a priori knowledge about the stimulus. Different performance measure functions are proposed to solve the cluster validity problem and to detect the number of substructures present in the data. The results are presented on both simulated data (with Contrast to Noise Ratios similar to those observed in fMRT), and in vivo EPI data for a motor paradigm. This new data analysis procedure may be very useful for optimization of data analysis and quality in fMRI.","PeriodicalId":156581,"journal":{"name":"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Unsupervised fuzzy clustering analysis of fMRI series\",\"authors\":\"M. Fadili, S. Ruan, D. Bloyet, B. Mazoyer\",\"doi\":\"10.1109/IEMBS.1998.745515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential of an fMRI data analysis strategy using a paradigm independent unsupervised fuzzy clustering is presented. The power of the method is demonstrated to discriminate different types of responses without prior knowledge relative to the paradigm in contrast with classic statistical methods which require a priori knowledge about the stimulus. Different performance measure functions are proposed to solve the cluster validity problem and to detect the number of substructures present in the data. The results are presented on both simulated data (with Contrast to Noise Ratios similar to those observed in fMRT), and in vivo EPI data for a motor paradigm. This new data analysis procedure may be very useful for optimization of data analysis and quality in fMRI.\",\"PeriodicalId\":156581,\"journal\":{\"name\":\"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1998.745515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1998.745515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

提出了一种使用范式独立的无监督模糊聚类的fMRI数据分析策略的潜力。与需要先验知识的经典统计方法相比,该方法的力量被证明可以在没有先验知识的情况下区分不同类型的反应。提出了不同的性能度量函数来解决聚类有效性问题和检测数据中存在的子结构的数量。结果是基于模拟数据(与fMRT中观察到的噪声比相比)和运动范式的体内EPI数据。这种新的数据分析方法对优化功能磁共振成像的数据分析和数据质量具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised fuzzy clustering analysis of fMRI series
The potential of an fMRI data analysis strategy using a paradigm independent unsupervised fuzzy clustering is presented. The power of the method is demonstrated to discriminate different types of responses without prior knowledge relative to the paradigm in contrast with classic statistical methods which require a priori knowledge about the stimulus. Different performance measure functions are proposed to solve the cluster validity problem and to detect the number of substructures present in the data. The results are presented on both simulated data (with Contrast to Noise Ratios similar to those observed in fMRT), and in vivo EPI data for a motor paradigm. This new data analysis procedure may be very useful for optimization of data analysis and quality in fMRI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信