位置编码:改进类别不平衡摩托车头盔使用分类

Hanhe Lin, Guangan Chen, F. Siebert
{"title":"位置编码:改进类别不平衡摩托车头盔使用分类","authors":"Hanhe Lin, Guangan Chen, F. Siebert","doi":"10.1109/ICIP42928.2021.9506178","DOIUrl":null,"url":null,"abstract":"Recent advances in the automated detection of motorcycle riders’ helmet use have enabled road safety actors to process large scale video data efficiently and with high accuracy. To distinguish drivers from passengers in helmet use, the most straightforward way is to train a multi-class classifier, where each class corresponds to a specific combination of rider position and individual riders’ helmet use. However, such strategy results in long-tailed data distribution, with critically low class samples for a number of uncommon classes. In this paper, we propose a novel approach to address this limitation. Let n be the maximum number of riders a motorcycle can hold, we encode the helmet use on a motorcycle as a vector with 2n bits, where the first n bits denote if the encoded positions have riders, and the latter n bits denote if the rider in the corresponding position wears a helmet. With the novel helmet use positional encoding, we propose a deep learning model that stands on existing image classification architecture. The model simultaneously trains 2n binary classifiers, which allows more balanced samples for training. This method is simple to implement and requires no hyperparameter tuning. Experimental results demonstrate our approach outperforms the state-of-the-art approaches by 1.9% accuracy.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Positional Encoding: Improving Class-Imbalanced Motorcycle Helmet use Classification\",\"authors\":\"Hanhe Lin, Guangan Chen, F. Siebert\",\"doi\":\"10.1109/ICIP42928.2021.9506178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in the automated detection of motorcycle riders’ helmet use have enabled road safety actors to process large scale video data efficiently and with high accuracy. To distinguish drivers from passengers in helmet use, the most straightforward way is to train a multi-class classifier, where each class corresponds to a specific combination of rider position and individual riders’ helmet use. However, such strategy results in long-tailed data distribution, with critically low class samples for a number of uncommon classes. In this paper, we propose a novel approach to address this limitation. Let n be the maximum number of riders a motorcycle can hold, we encode the helmet use on a motorcycle as a vector with 2n bits, where the first n bits denote if the encoded positions have riders, and the latter n bits denote if the rider in the corresponding position wears a helmet. With the novel helmet use positional encoding, we propose a deep learning model that stands on existing image classification architecture. The model simultaneously trains 2n binary classifiers, which allows more balanced samples for training. This method is simple to implement and requires no hyperparameter tuning. Experimental results demonstrate our approach outperforms the state-of-the-art approaches by 1.9% accuracy.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近在摩托车骑手头盔使用自动检测方面取得的进展使道路安全行为者能够高效、高精度地处理大规模视频数据。为了区分驾驶员和乘客的头盔使用情况,最直接的方法是训练一个多类别分类器,其中每个类别对应于车手位置和个别车手头盔使用的特定组合。然而,这种策略导致了长尾数据分布,对于许多不常见的类别,其类别样本非常低。在本文中,我们提出了一种新的方法来解决这一限制。设n为摩托车可容纳的最大乘员数,我们将摩托车上的头盔使用情况编码为2n位的向量,其中前n位表示编码位置是否有乘员,后n位表示相应位置的乘员是否戴头盔。基于位置编码的新型头盔,我们提出了一种基于现有图像分类架构的深度学习模型。该模型同时训练2n个二元分类器,使得训练样本更加平衡。该方法易于实现,不需要超参数调优。实验结果表明,我们的方法比最先进的方法准确率高1.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positional Encoding: Improving Class-Imbalanced Motorcycle Helmet use Classification
Recent advances in the automated detection of motorcycle riders’ helmet use have enabled road safety actors to process large scale video data efficiently and with high accuracy. To distinguish drivers from passengers in helmet use, the most straightforward way is to train a multi-class classifier, where each class corresponds to a specific combination of rider position and individual riders’ helmet use. However, such strategy results in long-tailed data distribution, with critically low class samples for a number of uncommon classes. In this paper, we propose a novel approach to address this limitation. Let n be the maximum number of riders a motorcycle can hold, we encode the helmet use on a motorcycle as a vector with 2n bits, where the first n bits denote if the encoded positions have riders, and the latter n bits denote if the rider in the corresponding position wears a helmet. With the novel helmet use positional encoding, we propose a deep learning model that stands on existing image classification architecture. The model simultaneously trains 2n binary classifiers, which allows more balanced samples for training. This method is simple to implement and requires no hyperparameter tuning. Experimental results demonstrate our approach outperforms the state-of-the-art approaches by 1.9% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信