FPGA上异步时钟运行时可重构模块网格的设计与性能

Jochen Strunk, Toni Volkmer, W. Rehm, H. Schick
{"title":"FPGA上异步时钟运行时可重构模块网格的设计与性能","authors":"Jochen Strunk, Toni Volkmer, W. Rehm, H. Schick","doi":"10.1109/ReConFig.2009.24","DOIUrl":null,"url":null,"abstract":"This paper examines the feasibility of utilizing a grid of asynchronously clocked run-time reconfigurable modules (RTRMs) on a dynamically and partially reconfigurable (DPR) FPGA. In contrast to a synchronously clocked grid studied in research, the design, the implementation, the performance and the resource utilization of an asynchronously clocked grid is shown. Such a run-time reconfigurable (RTR) grid on a FPGA can be utilized to dynamically offload compute functions on a host coupled system, providing multi-user and multi-context execution on behalf of user demands. For embedded systems it can be utilized as a highly dynamical platform by providing functional enhancement by module replacement during run-time. The presented platform leverages synthesis and development constraints and is able to increase the overall throughput by allowing multiple clock domains within the grid. The performance and the additional resource utilization of handling multiple clock domains is compared to synchronously clocked grids. As proof of concept a case study with a grid of 47 RTRMs is conducted on state of the art Virtex-5 FPGAs.","PeriodicalId":325631,"journal":{"name":"2009 International Conference on Reconfigurable Computing and FPGAs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Performance of a Grid of Asynchronously Clocked Run-Time Reconfigurable Modules on a FPGA\",\"authors\":\"Jochen Strunk, Toni Volkmer, W. Rehm, H. Schick\",\"doi\":\"10.1109/ReConFig.2009.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the feasibility of utilizing a grid of asynchronously clocked run-time reconfigurable modules (RTRMs) on a dynamically and partially reconfigurable (DPR) FPGA. In contrast to a synchronously clocked grid studied in research, the design, the implementation, the performance and the resource utilization of an asynchronously clocked grid is shown. Such a run-time reconfigurable (RTR) grid on a FPGA can be utilized to dynamically offload compute functions on a host coupled system, providing multi-user and multi-context execution on behalf of user demands. For embedded systems it can be utilized as a highly dynamical platform by providing functional enhancement by module replacement during run-time. The presented platform leverages synthesis and development constraints and is able to increase the overall throughput by allowing multiple clock domains within the grid. The performance and the additional resource utilization of handling multiple clock domains is compared to synchronously clocked grids. As proof of concept a case study with a grid of 47 RTRMs is conducted on state of the art Virtex-5 FPGAs.\",\"PeriodicalId\":325631,\"journal\":{\"name\":\"2009 International Conference on Reconfigurable Computing and FPGAs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Reconfigurable Computing and FPGAs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReConFig.2009.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Reconfigurable Computing and FPGAs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2009.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在动态和部分可重构FPGA上利用异步时钟运行时可重构模块(rtrm)网格的可行性。在研究同步时钟网格的基础上,给出了异步时钟网格的设计、实现、性能和资源利用率。FPGA上的这种运行时可重构(RTR)网格可用于动态卸载主机耦合系统上的计算功能,提供代表用户需求的多用户和多上下文执行。对于嵌入式系统,它可以作为一个高度动态的平台,在运行时通过模块替换提供功能增强。所提出的平台利用了综合和开发约束,并且能够通过在网格中允许多个时钟域来提高总体吞吐量。将处理多个时钟域的性能和额外资源利用率与同步时钟网格进行了比较。作为概念验证,在最先进的Virtex-5 fpga上进行了47个rtrm网格的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Performance of a Grid of Asynchronously Clocked Run-Time Reconfigurable Modules on a FPGA
This paper examines the feasibility of utilizing a grid of asynchronously clocked run-time reconfigurable modules (RTRMs) on a dynamically and partially reconfigurable (DPR) FPGA. In contrast to a synchronously clocked grid studied in research, the design, the implementation, the performance and the resource utilization of an asynchronously clocked grid is shown. Such a run-time reconfigurable (RTR) grid on a FPGA can be utilized to dynamically offload compute functions on a host coupled system, providing multi-user and multi-context execution on behalf of user demands. For embedded systems it can be utilized as a highly dynamical platform by providing functional enhancement by module replacement during run-time. The presented platform leverages synthesis and development constraints and is able to increase the overall throughput by allowing multiple clock domains within the grid. The performance and the additional resource utilization of handling multiple clock domains is compared to synchronously clocked grids. As proof of concept a case study with a grid of 47 RTRMs is conducted on state of the art Virtex-5 FPGAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信