{"title":"团宽推广的严密算法应用","authors":"V. Chekan, Stefan Kratsch","doi":"10.48550/arXiv.2307.04628","DOIUrl":null,"url":null,"abstract":"In this work, we study two natural generalizations of clique-width introduced by Martin F\\\"urer. Multi-clique-width (mcw) allows every vertex to hold multiple labels [ITCS 2017], while for fusion-width (fw) we have a possibility to merge all vertices of a certain label [LATIN 2014]. F\\\"urer has shown that both parameters are upper-bounded by treewidth thus making them more appealing from an algorithmic perspective than clique-width and asked for applications of these parameters for problem solving. First, we determine the relation between these two parameters by showing that $\\operatorname{mcw} \\leq \\operatorname{fw} + 1$. Then we show that when parameterized by multi-clique-width, many problems (e.g., Connected Dominating Set) admit algorithms with the same running time as for clique-width despite the exponential gap between these two parameters. For some problems (e.g., Hamiltonian Cycle) we show an analogous result for fusion-width: For this we present an alternative view on fusion-width by introducing so-called glue-expressions which might be interesting on their own. All algorithms obtained in this work are tight up to (Strong) Exponential Time Hypothesis.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight Algorithmic Applications of Clique-Width Generalizations\",\"authors\":\"V. Chekan, Stefan Kratsch\",\"doi\":\"10.48550/arXiv.2307.04628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study two natural generalizations of clique-width introduced by Martin F\\\\\\\"urer. Multi-clique-width (mcw) allows every vertex to hold multiple labels [ITCS 2017], while for fusion-width (fw) we have a possibility to merge all vertices of a certain label [LATIN 2014]. F\\\\\\\"urer has shown that both parameters are upper-bounded by treewidth thus making them more appealing from an algorithmic perspective than clique-width and asked for applications of these parameters for problem solving. First, we determine the relation between these two parameters by showing that $\\\\operatorname{mcw} \\\\leq \\\\operatorname{fw} + 1$. Then we show that when parameterized by multi-clique-width, many problems (e.g., Connected Dominating Set) admit algorithms with the same running time as for clique-width despite the exponential gap between these two parameters. For some problems (e.g., Hamiltonian Cycle) we show an analogous result for fusion-width: For this we present an alternative view on fusion-width by introducing so-called glue-expressions which might be interesting on their own. All algorithms obtained in this work are tight up to (Strong) Exponential Time Hypothesis.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.04628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.04628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tight Algorithmic Applications of Clique-Width Generalizations
In this work, we study two natural generalizations of clique-width introduced by Martin F\"urer. Multi-clique-width (mcw) allows every vertex to hold multiple labels [ITCS 2017], while for fusion-width (fw) we have a possibility to merge all vertices of a certain label [LATIN 2014]. F\"urer has shown that both parameters are upper-bounded by treewidth thus making them more appealing from an algorithmic perspective than clique-width and asked for applications of these parameters for problem solving. First, we determine the relation between these two parameters by showing that $\operatorname{mcw} \leq \operatorname{fw} + 1$. Then we show that when parameterized by multi-clique-width, many problems (e.g., Connected Dominating Set) admit algorithms with the same running time as for clique-width despite the exponential gap between these two parameters. For some problems (e.g., Hamiltonian Cycle) we show an analogous result for fusion-width: For this we present an alternative view on fusion-width by introducing so-called glue-expressions which might be interesting on their own. All algorithms obtained in this work are tight up to (Strong) Exponential Time Hypothesis.